آموزش نرم افزار های آماری
9.31K subscribers
292 photos
323 videos
489 files
111 links
کانال اصلی @paphd

سایر کانالهای ما:
@wikileak
@engineerphd
@paphd2
@engphd
@bourse_pajohesh

اینستاگرام
https://instagram.com/paphd2
Download Telegram
تعاریف کلیدی

#قسمت_نهم

#مقیاس_ترتیبی

عبارت ترتیبی؛ یعنی ترتیب دادن.

مقیاس رتبه‌ای، مقیاسی است که افراد یا اشیا را از لحاظ صفت ویژه، رتبه‌بندی می‌کند. در این مقیاس به تعداد افراد، رتبه وجود دارد. در مقیاس رتبه‌ای، اعداد فقط اطلاعاتی درباره سلسله مراتب یا به عبارتی، رتبه اشیاء یا افراد در طول مقیاس، فراهم می‌ورند؛ مثل «طبقه اجتماعی – اقتصادی». در مقیاس رتبه ای نه تنها تفاوت کیفی متغیر ها مشخص می شود.( مانند مقیاس اسمی) بلکه برتری یا کم تری مقدار و درجه ی صفت مورد بررسی نیز، نشان داده می شود. بدین معنا که افراد مورد مطالعه از نظر صفت مورد نظر، از بیش ترین تا کم ترین مقدار آن صفت درجه بندی و مرتبه هر فرد نسبت به دیگران مشخص می شود. فرض کنید که مشاهده گر در مثال قبلی ما، با تمام کودکان کلاس مصاحبه کرده و سپس آنان را بر حسب میزان شادی رتبه بندی نموده است. اکنون شادی هر کودک را می توان بر حسب رتبه مشخص کرده و سپس آنان را بر حسب میزان شادی رتبه بندی کرد. با مشخص کردن ترتیب دانش آموزان بر حسب شادی، مشاهده گر یک مقیاس ترتیبی به وجود آورده است.


📊📈 @tephd
آموزش نرم افزارهای آمار
👍2
تعاریف کلیدی

#قسمت_دهم

#مقیاس_فاصله_ای

این مقیاس از مقیاس های قبلی کامل تر است. در این نوع اندازه گیری، نه تنها افراد از نظر صفت مورد مطالعه طبقه بندی می شوند و رتبه هر فرد تعیین می شود، بلکه تفاوت هر فرد با فرد دیگر را نیز می توان تعیین کرد. این مقیاس به ما اجازه می دهد، میانگین و انحراف معیار پاسخ های مرتبط با متغیر های مختلف را محاسبه کنیم.

به عبارت دیگر این مقیاس نه تنها قادر است افراد را با توجه به خصوصیت مشخصی گروه بندی کند و رتبه ها را درون گروه های مشخص سازد، بلکه قادر است مقدار این تفاوت را اندازه گیری و تفاوت بین اشخاص را مشخص سازد. در حقیقت نه تنها ترتیب اشیا بلکه فاصله بین آن ها نیز مشخص می گردد. علاوه بر آن در این مقیاس مبدا صفر وجود ندارد. برای مثال در یک آزمون نمره یک دانش آموز 20 و نمره دیگری 18 است. بنابراین مقیاس فاصله ای با فراهم آوردن واحد ثابت اندازه گیری، به تفاوت بین اعداد، معنا می دهد.

📊📈 @tephd
آموزش نرم افزارهای آمار
👍1
تعاریف کلیدی

#قسمت_یازدهم

#مقیاس_نسبی

مقیاس نسبی دقیق ترین مقیاس اندازه گیری است. خصوصیات ممتاز مقیاس نسبی داشتن نقطه ای دقیق برای شروع است که آن را صفر مطلق می نامیم. و از این رو، نارسایی نقطه دلخواه برای شروع در مقیاس ترتیبی را جبران می کند. صفر مطلق مقیاسی معنا دار در یک مقیاس اندازه گیری است. این مقیاس قوی ترین مقیاس اندازه گیری بین چهار مقیاس موجود است. نکته مهم این است که چنان چه متغیری را در مقیاس بالاتر، اندازه گیری کرده ایم می توانیم به مقیاس های سطح پایین تر تبدیل کنیم ولی عکس آن امکان پذیر نیست.

📊📈 @tephd
آموزش نرم افزارهای آمار
👍1
برنامه آموزشی 20مهرماه

در پنجشنبه به تعریف و تشریح این موضوعات میپردازیم
آمار پارامتری
آمار ناپارامتری
علم داده‌ها
توزیع آنرمال
و....


📊📈 @tephd
آموزش نرم افزارهای آمار
👍1
آموزش تخصصی آمار

محاسبات اماری
روش کار با نرم افزارهای آماری

جهت یادگیری گام به گام هم اکنون به ما ملحق شوید👇👇
https://t.me/joinchat/AAAAAEOUFZ7ebIvRFuwc_A
این کانال تحت پوشش و حمایت تیم راهبردی "منابع پارس پژوهه " است
@paphd
@tephd
@pajoohehgroup

با صبوری در کنار ما باشید و آمار را کامل و صحیح بیاموزید
👍1
تعاریف کلیدی

#قسمت_دوازدهم

#آمار_پارامتريك_ناپارامتريك

آمار پارامتريك، براي سنجش فرضيه هايي كه متغير آنها كمي است از آمار پارامتريك استفاده مي شود. متغيرهاي كمي به علت كمي بودن و واحد پذير بودن از اين ويژگي برخوردارند كه آنها را ميانگين پذير و انحراف معيار پذير مي كنند و به دليل همين ويژگي معمولا براي استفاده آزمون هاي پارامتريك، پيش فرض هايي لازم است كه از آن جمله نرمال بودن توزيع جامعه است زيرا در حالتي كه توزيع جامعه نرمال نباشد، ميانگين و انحراف معيار، نمايي واقعي از داده ها را به تصوير نمي كشانند.
آمار ناپارامتريك: براي سنجش فرضيه ها با متغيرهاي كيفي، آما ناپارامتريك استفاده مي شود. اين آزمون ها كه از آن ها با عنوان «آزمون هاي بدون پيش فرض» نيز ياد مي شود،‌ به هيچ پيش فرض خاصي نياز ندارند. جهت تبديل متغيرها مي توان متغيرهاي كمي را به كيفي تبديل نمود و آنها را با آزمون هاي ناپارامتريك مورد ارزيابي قرار داد ولي عكس اين عمل امكان پذير نمي باشد. ضمناً سطوح دقت در آزمون هاي پارامتريك از آزمون هاي ناپارامتريك بيشتر است.

📊📈 @tephd
آموزش نرم افزارهای آمار
👍1
تعاریف کلیدی

#قسمت_سیزدهم

#نما

نما(mode): مقداری از داده هاست که بیشترین فراوانی را دارد؛ همانطور که از تعریف مشخص است در نما نوع داده ها اهمیت ندارد بنابراین هم برای داده های کیفی و هم داده های کمی کاربرد دارد.
در مجموع این شاخص اطلاعات زیادی در اختیار نمی گذارد و معمولا به تنهایی گزارش نمی شود.

📊📈 @tephd
آموزش نرم افزارهای آمار
👍1
تعاریف کلیدی

#قسمت_چهاردهم

#میانه

میانه(median): برای متغیرهایی که مرتب کردن آنها از کوچک به بزرگ امکان پذیر است ( معنی دار است) میانه را می توان محاسبه نمود.
برای به دست آوردن میانه ابتدا داده ها را از کوچک به بزرگ مرتب کرده سپس داده ای که در مرکز قرار می گیرد را به میانه معرفی می کنیم.
میانه شاخصی است که 50 درصد (نیمی ) مشاهدات از آن کوچکتر و 50 درصد ( نیمی ) مشاهدات از آن بزرگتر هستند.
یکی از معایب میانه این است که بیشتر اطلاعات را در نظر نمی گیرد مثلا میانه مجموعه اعداد 110, 90, 24, 20, 73 و مجموعه اعداد 2500, 1900, 24, 0, 73 عدد 73 است. در حقیقت برای محاسبه میانه تعداد اعداد اهمیت دارد و مقادیر که در بالا و پایین میانه قرار می گیرند اهمیت ندارد.

📊📈 @tephd
آموزش نرم افزارهای آمار
👍1
تعاریف کلیدی

#قسمت_پانزدهم

#میانگین
میانگین پرکاربرد ترین شاخص مرکزی است
برای محاسبه میانگین مقدار تمام نمونه ها را جمع کرده و بر تعداد آنها تقسیم می کنیم.
همان گونه که از فرمول مشخص است میانگین را تنها برای داده های کمی می توان به کار برد و محاسبه میانگین برای داده های کیفی کاری غیر منطقی است.
یکی از معایب میانگین این است که تحت تاثیر داده های پرت قرار می گیرد. مثلا میانگین اعداد 1000, 8, 6, 4, 2 عدد 204 است که نماینده ی خوبی برای داده ها نیست
بنابراین در ارائه تجزیه و تحلیل ها و گزارش های آماری بیان یکی از شاخص های مرکزی به تنهایی کافی نیست و حداقل باید هر دو شاخص میانه و میانگین ارائه گردد. تا شکل توزیع به خوبی مشخص شود.

📊📈 @tephd
آموزش نرم افزارهای آمار
👍2
آموزش نرم افزار های آماری
تعاریف کلیدی #قسمت_پانزدهم #میانگین میانگین پرکاربرد ترین شاخص مرکزی است برای محاسبه میانگین مقدار تمام نمونه ها را جمع کرده و بر تعداد آنها تقسیم می کنیم. همان گونه که از فرمول مشخص است میانگین را تنها برای داده های کمی می توان به کار برد و محاسبه میانگین…
چند نکته مهم :

اگر میانگین و میانه یکی باشند توزیع مقادیر کاملا متقارن خواهد بود
اگر میانگین بزرگتر از میانه باشد توزیع مقادیر دارای چولگی مثبت ( به طرف راست) است.
اگر میانگین کوچکتر از میانه باشد توزیع مقادیر دارای چولگی منفی ( به طرف چپ) است

بنابراین هنگامی که تعدادی از مقادیر از بقیه اعداد خیلی بزرگتر یا خیلی کوچکتر هستند، میانگین به تنهایی شاخص خوبی نیست. این شاخص تحت تاثیر مقادیر پرت قرار می گیرد و لازم است که میانه را نیز گزارش نمود.


📊📈 @tephd
آموزش نرم افزارهای آمار
👎1
@stphd 001.pdf
841 KB
آموزش مقدماتی امار و احتمال با حل نمونه مثال

#امار
#احتمال
#آموزش _مقدماتی
📊📈 @tephd
آموزش نرم افزارهای آمار
👍2
4_311968939569578279.apk
1.1 MB
نرم افزار کاربردی

ویژه اندروید

واژه نامه آمار و احتمال

🎓 @stphd
🌐 www.pajooheh.ir

منابع اطلاعاتی پارس پژوهه
👍1👎1
This media is not supported in your browser
VIEW IN TELEGRAM
💠 آموزش SPSS «قسمت اول»

#SPSS17


🎓 @stphd
🌐 www.pajooheh.ir

منابع پارس پژوهه
👍1
Media is too big
VIEW IN TELEGRAM
💠 آموزش Word «قسمت اول»
(معرفی محیط نرم افزار و قسمت Ribbon)

#word_2016

🎓 @stphd
🌐 www.pajooheh.ir

منابع پارس پژوهه
👍2
Media is too big
VIEW IN TELEGRAM
💠 آموزش Word «قسمت دوم»
(استفاده از Templateها برای شروع ایجاد فایل)
#word_2016

❄️منابع پارس پژوهه❄️

🎓 @stphd
🌐 www.pajooheh.ir
This media is not supported in your browser
VIEW IN TELEGRAM
💠 آموزش SPSS «قسمت دوم»

#SPSS17

❄️منابع پارس پژوهه❄️

🎓 @stphd
🌐 www.pajooheh.ir
👍1
💠آزمون مناسب با توجه به نوع داده

❄️منابع پارس پژوهه❄️

🎓 @stphd
🌐 www.pajooheh.ir
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
💠آموزش SPSS «قسمت سوم»

❄️منابع پارس پژوهه❄️

🎓 @stphd
🌐 www.pajooheh.ir
👍1
Media is too big
VIEW IN TELEGRAM
💠 آموزش Word «قسمت سوم»
(باز کردن اسناد موجود، استفاده از کلیدهای میانبر و ...)

#word_2016

❄️منابع پارس پژوهه❄️

🎓 @stphd
🌐 www.pajooheh.ir
فصل10 آزمون کروسکال والیس.pdf
304.5 KB
💠 آزمون Kruskal-Wallis H «اچ کروسکال-والیس» در برنامه SPSS


مدرس: #دکتر_یحیی_علی_بابایی

#بر_اساس_درخواست

❄️منابع پارس پژوهه❄️

🎓 @stphd
🌐 www.pajooheh.ir