Data Engineers
8.73K subscribers
326 photos
74 files
327 links
Free Data Engineering Ebooks & Courses
Download Telegram
๐—”๐—ฐ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฏ๐Ÿฌ ๐— ๐—ผ๐˜€๐˜-๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€! ๐Ÿ˜

๐Ÿคฆ๐Ÿปโ€โ™€๏ธStruggling with SQL interviews? Not anymore!๐Ÿ“

SQL interviews can be challenging, but preparation is the key to success. Whether youโ€™re aiming for a data analytics role or just brushing up, this resource has got your back!๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4olhd6z

Letโ€™s crack that interview together!โœ…๏ธ
โค1
Understand the power of Data Lakehouse Architecture for ๐—™๐—ฅ๐—˜๐—˜ here...


๐Ÿšจ๐—ข๐—น๐—ฑ ๐˜„๐—ฎ๐˜†
โ€ข Complicated ETL processes for data integration.
โ€ข Silos of data storage, separating structured and unstructured data.
โ€ข High data storage and management costs in traditional warehouses.
โ€ข Limited scalability and delayed access to real-time insights.

โœ…๐—ก๐—ฒ๐˜„ ๐—ช๐—ฎ๐˜†
โ€ข Streamlined data ingestion and processing with integrated SQL capabilities.
โ€ข Unified storage layer accommodating both structured and unstructured data.
โ€ข Cost-effective storage by combining benefits of data lakes and warehouses.
โ€ข Real-time analytics and high-performance queries with SQL integration.

The shift?

Unified Analytics and Real-Time Insights > Siloed and Delayed Data Processing

Leveraging SQL to manage data in a data lakehouse architecture transforms how businesses handle data.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
โค2
๐ŸŒˆ Greetings from PVR CLOUD TECH!

๐Ÿ“” Course : Azure Data Engineering


๐Ÿ—“ Date: 4th August 2025

๐Ÿ•— Time: 9 PM to 10 PM IST | Monday

Duration: 3 Months

๐Ÿ€ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ ๐—–๐—ผ๐—ป๐˜๐—ฒ๐—ป๐˜:
https://lnkd.in/gX55prky

๐Ÿ€ ๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ต๐—ฒ๐—ฟ๐—ฒ:
https://lnkd.in/gV87jSES

๐Ÿ€ ๐—๐—ผ๐—ถ๐—ป ๐—ช๐—ต๐—ฎ๐˜๐˜€๐—”๐—ฝ๐—ฝ ๐—š๐—ฟ๐—ผ๐˜‚๐—ฝ:
https://lnkd.in/gRDKcb-y

๐Ÿ€ ๐—ช๐—ต๐—ฎ๐˜๐˜€๐—ฎ๐—ฝ๐—ฝ ๐—–๐—ต๐—ฎ๐—ป๐—ป๐—ฒ๐—น:
https://lnkd.in/gA6jRBYN

Thanks,
PVR Cloud Tech
๐Ÿ“ฑ +91-9346060794
โค2
Data Engineers
Python Interview.pdf
Top 100 Python Interview Questions ๐Ÿš€๐Ÿ”ฅ
โค1
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—™๐˜‚๐—น๐—น ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฌ๐—ผ๐˜‚ ๐—–๐—ฎ๐—ป ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐—ก๐—ผ๐˜„๐Ÿ˜

Ready to level up your tech game without spending a rupee? These 6 full-length courses are beginner-friendly, 100% free, and packed with practical knowledge๐Ÿ“š๐Ÿง‘โ€๐ŸŽ“

Whether you want to code in Python, hack ethically, or build your first Android app โ€” these videos are your shortcut to real tech skills๐Ÿ“ฑ๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42V73k4

Save this list and start crushing your tech goals today!โœ…๏ธ
โค1
Common Data Cleaning Techniques for Data Analysts

Remove Duplicates:

Purpose: Eliminate repeated rows to maintain unique data.

Example: SELECT DISTINCT column_name FROM table;


Handle Missing Values:

Purpose: Fill, remove, or impute missing data.

Example:

Remove: df.dropna() (in Python/Pandas)

Fill: df.fillna(0)


Standardize Data:

Purpose: Convert data to a consistent format (e.g., dates, numbers).

Example: Convert text to lowercase: df['column'] = df['column'].str.lower()


Remove Outliers:

Purpose: Identify and remove extreme values.

Example: df = df[df['column'] < threshold]


Correct Data Types:

Purpose: Ensure columns have the correct data type (e.g., dates as datetime, numeric values as integers).

Example: df['date'] = pd.to_datetime(df['date'])


Normalize Data:

Purpose: Scale numerical data to a standard range (0 to 1).

Example: from sklearn.preprocessing import MinMaxScaler; df['scaled'] = MinMaxScaler().fit_transform(df[['column']])


Data Transformation:

Purpose: Transform or aggregate data for better analysis (e.g., log transformations, aggregating columns).

Example: Apply log transformation: df['log_column'] = np.log(df['column'] + 1)


Handle Categorical Data:

Purpose: Convert categorical data into numerical data using encoding techniques.

Example: df['encoded_column'] = pd.get_dummies(df['category_column'])


Impute Missing Values:

Purpose: Fill missing values with a meaningful value (e.g., mean, median, or a specific value).

Example: df['column'] = df['column'].fillna(df['column'].mean())

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
โค3
Forwarded from Generative AI
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ๐˜€ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to earn free certificates and badges from Microsoft? ๐Ÿš€

These courses are your golden ticket to mastering in-demand tech skills while boosting your resume with official Microsoft credentials๐Ÿง‘โ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mlCvPu

These certifications will help you stand out in interviews and open new career opportunities in techโœ…๏ธ
โค1
Top 20 #SQL INTERVIEW QUESTIONS

1๏ธโƒฃ Explain Order of Execution of SQL query
2๏ธโƒฃ Provide a use case for each of the functions Rank, Dense_Rank & Row_Number ( ๐Ÿ’ก majority struggle )
3๏ธโƒฃ Write a query to find the cumulative sum/Running Total
4๏ธโƒฃ Find the Most selling product by sales/ highest Salary of employees
5๏ธโƒฃ Write a query to find the 2nd/nth highest Salary of employees
6๏ธโƒฃ Difference between union vs union all
7๏ธโƒฃ Identify if there any duplicates in a table
8๏ธโƒฃ Scenario based Joins question, understanding of Inner, Left and Outer Joins via simple yet tricky question
9๏ธโƒฃ LAG, write a query to find all those records where the transaction value is greater then previous transaction value
1๏ธโƒฃ 0๏ธโƒฃ Rank vs Dense Rank, query to find the 2nd highest Salary of employee
( Ideal soln should handle ties)
1๏ธโƒฃ 1๏ธโƒฃ Write a query to find the Running Difference (Ideal sol'n using windows function)
1๏ธโƒฃ 2๏ธโƒฃ Write a query to display year on year/month on month growth
1๏ธโƒฃ 3๏ธโƒฃ Write a query to find rolling average of daily sign-ups
1๏ธโƒฃ 4๏ธโƒฃ Write a query to find the running difference using self join (helps in understanding the logical approach, ideally this question is solved via windows function)
1๏ธโƒฃ 5๏ธโƒฃ Write a query to find the cumulative sum using self join
(you can use windows function to solve this question)
1๏ธโƒฃ6๏ธโƒฃ Differentiate between a clustered index and a non-clustered index?
1๏ธโƒฃ7๏ธโƒฃ What is a Candidate key?
1๏ธโƒฃ8๏ธโƒฃWhat is difference between Primary key and Unique key?
1๏ธโƒฃ9๏ธโƒฃWhat's the difference between RANK & DENSE_RANK in SQL?
2๏ธโƒฃ0๏ธโƒฃ Whats the difference between LAG & LEAD in SQL?

Access SQL Learning Series for Free: https://t.me/sqlspecialist/523

Hope it helps :)
โค1
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ต๐—ฎ๐—ป๐—ป๐—ฒ๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐˜†๐Ÿ˜

Want to become a Data Analyst but donโ€™t know where to start? ๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

You donโ€™t need to spend thousands on courses. In fact, some of the best free learning resources are already on YouTube โ€” taught by industry professionals who break down everything step by step.๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/47f3UOJ

Start with just one channel, stay consistent, and within months, youโ€™ll have the confidence (and portfolio) to apply for data analyst roles.โœ…๏ธ
โค1
SQL Cheatsheet ๐Ÿ“

This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether youโ€™re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.

1. Database Basics
- CREATE DATABASE db_name;
- USE db_name;

2. Tables
- Create Table: CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table: DROP TABLE table_name;
- Alter Table: ALTER TABLE table_name ADD column_name datatype;

3. Insert Data
- INSERT INTO table_name (col1, col2) VALUES (val1, val2);

4. Select Queries
- Basic Select: SELECT * FROM table_name;
- Select Specific Columns: SELECT col1, col2 FROM table_name;
- Select with Condition: SELECT * FROM table_name WHERE condition;

5. Update Data
- UPDATE table_name SET col1 = value1 WHERE condition;

6. Delete Data
- DELETE FROM table_name WHERE condition;

7. Joins
- Inner Join: SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join: SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join: SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;

8. Aggregations
- Count: SELECT COUNT(*) FROM table_name;
- Sum: SELECT SUM(col) FROM table_name;
- Group By: SELECT col, COUNT(*) FROM table_name GROUP BY col;

9. Sorting & Limiting
- Order By: SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results: SELECT * FROM table_name LIMIT n;

10. Indexes
- Create Index: CREATE INDEX idx_name ON table_name (col);
- Drop Index: DROP INDEX idx_name;

11. Subqueries
- SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);

12. Views
- Create View: CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View: DROP VIEW view_name;
โค4
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

Ready to Upgrade Your Skills for a Data-Driven Career in 2025?๐Ÿ“

Whether youโ€™re a student, a fresher, or someone switching to tech, these free beginner-friendly courses will help you get started in data analysis, machine learning, Python, and more๐Ÿ‘จโ€๐Ÿ’ป๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mwOACf

Best For: Beginners ready to dive into real machine learningโœ…๏ธ
โค2
ML Engineer vs AI Engineer

ML Engineer / MLOps

-Focuses on the deployment of machine learning models.
-Bridges the gap between data scientists and production environments.
-Designing and implementing machine learning models into production.
-Automating and orchestrating ML workflows and pipelines.
-Ensuring reproducibility, scalability, and reliability of ML models.
-Programming: Python, R, Java
-Libraries: TensorFlow, PyTorch, Scikit-learn
-MLOps: MLflow, Kubeflow, Docker, Kubernetes, Git, Jenkins, CI/CD tools

AI Engineer / Developer

- Applying AI techniques to solve specific problems.
- Deep knowledge of AI algorithms and their applications.
- Developing and implementing AI models and systems.
- Building and integrating AI solutions into existing applications.
- Collaborating with cross-functional teams to understand requirements and deliver AI-powered solutions.
- Programming: Python, Java, C++
- Libraries: TensorFlow, PyTorch, Keras, OpenCV
- Frameworks: ONNX, Hugging Face
โค2
๐—ง๐—ผ๐—ฝ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐— ๐—ก๐—–๐˜€๐Ÿ˜

If you can answer these Python questions, youโ€™re already ahead of 90% of candidates.๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

These arenโ€™t your average textbook questions. These are real interview questions asked in top MNCs โ€” designed to test how deeply you understand Python.๐Ÿ“Š๐Ÿ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mu4oVx

This is the smart way to prepareโœ…๏ธ
โค1
If you want to Excel as a Data Analyst and land a high-paying job, master these essential skills:

1๏ธโƒฃ Data Extraction & Processing:
โ€ข SQL โ€“ SELECT, JOIN, GROUP BY, CTE, WINDOW FUNCTIONS
โ€ข Python/R for Data Analysis โ€“ Pandas, NumPy, Matplotlib, Seaborn
โ€ข Excel โ€“ Pivot Tables, VLOOKUP, XLOOKUP, Power Query

2๏ธโƒฃ Data Cleaning & Transformation:
โ€ข Handling Missing Data โ€“ COALESCE(), IFNULL(), DROPNA()
โ€ข Data Normalization โ€“ Removing duplicates, standardizing formats
โ€ข ETL Process โ€“ Extract, Transform, Load

3๏ธโƒฃ Exploratory Data Analysis (EDA):
โ€ข Descriptive Statistics โ€“ Mean, Median, Mode, Variance, Standard Deviation
โ€ข Data Visualization โ€“ Bar Charts, Line Charts, Heatmaps, Histograms

4๏ธโƒฃ Business Intelligence & Reporting:
โ€ข Power BI & Tableau โ€“ Dashboards, DAX, Filters, Drill-through
โ€ข Google Data Studio โ€“ Interactive reports

5๏ธโƒฃ Data-Driven Decision Making:
โ€ข A/B Testing โ€“ Hypothesis testing, P-values
โ€ข Forecasting & Trend Analysis โ€“ Time Series Analysis
โ€ข KPI & Metrics Analysis โ€“ ROI, Churn Rate, Customer Segmentation

6๏ธโƒฃ Data Storytelling & Communication:
โ€ข Presentation Skills โ€“ Explain insights to non-technical stakeholders
โ€ข Dashboard Best Practices โ€“ Clean UI, relevant KPIs, interactive visuals

7๏ธโƒฃ Bonus: Automation & AI Integration
โ€ข SQL Query Optimization โ€“ Improve query performance
โ€ข Python Scripting โ€“ Automate repetitive tasks
โ€ข ChatGPT & AI Tools โ€“ Enhance productivity

Like this post if you need a complete tutorial on all these topics! ๐Ÿ‘โค๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)

#dataanalysts
โค3
Data Engineers โ€“ Donโ€™t Just Learn Tools. Learn This:

So youโ€™re learning:
โ€“ Spark โœ…
โ€“ Airflow โœ…
โ€“ dbt โœ…
โ€“ Kafka โœ…

But hereโ€™s a hard truth ๐Ÿ‘‡
๐Ÿง  Tools change. Principles donโ€™t.

Top 1% Data Engineers focus on:

๐Ÿ”ธ Data modeling โ€“ Understand star vs snowflake, SCDs, normalization.
๐Ÿ”ธ Data contracts โ€“ Build reliable pipelines, not spaghetti code.
๐Ÿ”ธ System design โ€“ Think like a backend engineer. Learn how data flows.
๐Ÿ”ธ Observability โ€“ Logging, metrics, lineage. Be the one who finds data bugs.

๐Ÿ’ฅ Want to level up? Do this:
โœ… Build a mini data warehouse from scratch (on DuckDB + Airflow)
โœ… Join open-source data eng projects
โœ… Read โ€œThe Data Engineering Cookbookโ€ (free)

๐Ÿ“ˆ Donโ€™t just run pipelines. Architect them.
โค3
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฏ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐— ๐—ผ๐—ฑ๐˜‚๐—น๐—ฒ๐˜€!๐Ÿ˜

Start Mastering Azure Machine Learning โ€” 100% Free!๐Ÿ’ฅ

Want to get into AI and Machine Learning using Azure but donโ€™t know where to begin?๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45oT5r0

These official Microsoft Learn modules are all you need โ€” hands-on, beginner-friendly, and backed with certificates๐Ÿง‘โ€๐ŸŽ“๐Ÿ“œ
If I were planning for Data Engineering interviews in the upcoming months then I will prepare this way โ›ต



1. Learn important SQL concepts
Go through all key topics in SQL like joins, CTEs, window functions, group by, having etc.

2. Solve 50+ recently asked SQL queries
Practice queries from real interviews. focus on tricky joins, aggregations and filtering.

3. Solve 50+ Python coding questions
Focus on:

List, dictionary, string problems, File handling, Algorithms (sorting, searching, etc.)


4. Learn PySpark basics
Understand: RDDs, DataFrames , Datasets & Spark SQL


5. Practice 20 top PySpark coding tasks
Work on real coding examples using PySpark -data filtering, joins, aggregations, etc.

6. Revise Data Warehousing concepts
Focus on:

Star and snowflake schema
Normalization and denormalization


7. Understand the data model used in your project
Know the structure of your tables and how they connect.


8. Practice explaining your project
Be ready to talk about: Architecture, Tools used, Pipeline flow & Business value


9. Review cloud services used in your project
For AWS, Azure, GCP:
Understand what services you used, why you used them nd how they work.

10. Understand your role in the project
Be clear on what you did technically . What problems you solved and how.

11. Prepare to explain the full data pipeline
From data ingestion to storage to processing - use examples.

12. Go through common Data Engineer interview questions
Practice answering questions about ETL, SQL, Python, Spark, cloud etc.

13. Read recent interview experiences
Check LinkedIn , GeeksforGeeks, Medium for company-specific interview experiences.

14. Prepare for high-level system design
questions.
โค4
๐Ÿ“ ๐…๐ซ๐ž๐ž ๐˜๐จ๐ฎ๐“๐ฎ๐›๐ž ๐‘๐ž๐ฌ๐จ๐ฎ๐ซ๐œ๐ž๐ฌ ๐ญ๐จ ๐๐ฎ๐ข๐ฅ๐ ๐€๐ˆ ๐€๐ฎ๐ญ๐จ๐ฆ๐š๐ญ๐ข๐จ๐ง๐ฌ & ๐€๐ ๐ž๐ง๐ญ๐ฌ ๐–๐ข๐ญ๐ก๐จ๐ฎ๐ญ ๐‚๐จ๐๐ข๐ง๐ ๐Ÿ˜

Want to Create AI Automations & Agents Without Writing a Single Line of Code?๐Ÿง‘โ€๐Ÿ’ป

These 5 free YouTube tutorials will take you from complete beginner to automation expert in record time.๐Ÿง‘โ€๐ŸŽ“โœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lhYwhn

Just pure, actionable automation skills โ€” for free.โœ…๏ธ
โค1
Use of Machine Learning in Data Analytics
โค1