Data Engineers
8.79K subscribers
343 photos
74 files
334 links
Free Data Engineering Ebooks & Courses
Download Telegram
We have now reached 85K subscribers on WhatsApp

Thank you guys❤️

Do subscribe if you haven’t yet for

BEST DATA ENGINEERING CONTENT

https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
2
Forwarded from Artificial Intelligence
𝟰 𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝘁𝗮𝗿𝘁 𝗖𝗼𝗱𝗶𝗻𝗴 𝗟𝗶𝗸𝗲 𝗮 𝗣𝗿𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Looking to kickstart your coding journey with Python? 🐍

Whether you’re an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jtpf9M

These platforms offer high-quality learning — no fees, no catch✅️
2
𝗧𝗼𝗽 𝗠𝗡𝗖𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Google :- https://pdlink.in/3H2YJX7

Microsoft :- https://pdlink.in/4iq8QlM

Infosys :- https://pdlink.in/4jsHZXf

IBM :- https://pdlink.in/3QyJyqk

Cisco :- https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified 🎓
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

🚀 Learn In-Demand Tech Skills for Free — Certified by Microsoft!

These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Hio2Vg

Enroll For FREE & Get Certified🎓️
1
𝗙𝗥𝗘𝗘 𝗧𝗔𝗧𝗔 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽😍

Gain Real-World Data Analytics Experience with TATA – 100% Free!

This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst — no experience required!

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3FyjDgp

Enroll For FREE & Get Certified🎓️
Machine Learning types
🔥2
𝟰 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗙𝗿𝗲𝗲 𝗥𝗼𝗮𝗱𝗺𝗮𝗽𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗝𝗮𝘃𝗮𝗦𝗰𝗿𝗶𝗽𝘁, 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲, 𝗔𝗜/𝗠𝗟 & 𝗙𝗿𝗼𝗻𝘁𝗲𝗻𝗱 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 😍

Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners🚀

Learning tech doesn’t have to be overwhelming—especially when you have a roadmap to guide you!📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45wfx2V

Enjoy Learning ✅️
1
Data Analyst vs Data Engineer vs Data Scientist

Skills required to become a Data Analyst 👇

- Advanced Excel: Proficiency in Excel is crucial for data manipulation, analysis, and creating dashboards.
- SQL/Oracle: SQL is essential for querying databases to extract, manipulate, and analyze data.
- Python/R: Basic scripting knowledge in Python or R for data cleaning, analysis, and simple automations.
- Data Visualization: Tools like Power BI or Tableau for creating interactive reports and dashboards.
- Statistical Analysis: Understanding of basic statistical concepts to analyze data trends and patterns.


Skills required to become a Data Engineer: 👇

- Programming Languages: Strong skills in Python or Java for building data pipelines and processing data.
- SQL and NoSQL: Knowledge of relational databases (SQL) and non-relational databases (NoSQL) like Cassandra or MongoDB.
- Big Data Technologies: Proficiency in Hadoop, Hive, Pig, or Spark for processing and managing large data sets.
- Data Warehousing: Experience with tools like Amazon Redshift, Google BigQuery, or Snowflake for storing and querying large datasets.
- ETL Processes: Expertise in Extract, Transform, Load (ETL) tools and processes for data integration.


Skills required to become a Data Scientist: 👇

- Advanced Tools: Deep knowledge of R, Python, or SAS for statistical analysis and data modeling.
- Machine Learning Algorithms: Understanding and implementation of algorithms using libraries like scikit-learn, TensorFlow, and Keras.
- SQL and NoSQL: Ability to work with both structured and unstructured data using SQL and NoSQL databases.
- Data Wrangling & Preprocessing: Skills in cleaning, transforming, and preparing data for analysis.
- Statistical and Mathematical Modeling: Strong grasp of statistics, probability, and mathematical techniques for building predictive models.
- Cloud Computing: Familiarity with AWS, Azure, or Google Cloud for deploying machine learning models.

Bonus Skills Across All Roles:

- Data Visualization: Mastery in tools like Power BI and Tableau to visualize and communicate insights effectively.
- Advanced Statistics: Strong statistical foundation to interpret and validate data findings.
- Domain Knowledge: Industry-specific knowledge (e.g., finance, healthcare) to apply data insights in context.
- Communication Skills: Ability to explain complex technical concepts to non-technical stakeholders.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://t.me/DataSimplifier

Like this post for more content like this 👍♥️

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
1
Forwarded from Artificial Intelligence
𝟴 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗿𝗼𝗺 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗠𝗜𝗧 & 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱😍

🎓 Learn Data Science for Free from the World’s Best Universities🚀

Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online — and they’re 100% free. 🎯📍

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Hfpwjc

All The Best 👍
1👍1
🔹 🔥 Pro Tips for Aspiring Data Engineers

1. Learn SQL deeply – it's still the foundation of everything
2. Understand data formats: JSON, Parquet, Avro, ORC
3. Master Apache Spark — it's everywhere
4. Learn to use Airflow for orchestrating workflows
5. Practice writing ETL pipelines — build your own mini data warehouse
6. Get comfortable with cloud platforms (start with AWS/GCP free tiers)
7. Version-control your work using Git + DVC for data versioning
8. Learn Docker & Kubernetes basics — modern data infra depends on it
9. Explore real-time processing: Kafka, Flink, and Spark Streaming
10. Follow best practices for data modeling — star/snowflake schemas, SCDs, etc
3
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗶𝗻 𝗝𝘂𝘀𝘁 𝟯 𝗠𝗼𝗻𝘁𝗵𝘀 𝘄𝗶𝘁𝗵 𝗧𝗵𝗶𝘀 𝗙𝗿𝗲𝗲 𝗚𝗶𝘁𝗛𝘂𝗯 𝗥𝗼𝗮𝗱𝗺𝗮𝗽😍

🎯 Want to Master Data Science in Just 3 Months?📊

Feeling overwhelmed by the sheer volume of resources and don’t know where to start? You’re not alone🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/43uHPrX

This FREE GitHub roadmap is a game-changer for anyone✅️
1
🔍 Mastering Spark: 20 Interview Questions Demystified!

1️⃣ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2️⃣ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3️⃣ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4️⃣ RDD Operations: Explore the various RDD operations that power Spark.
5️⃣ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6️⃣ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7️⃣ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8️⃣ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9️⃣ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
🔟 spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1️⃣1️⃣ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1️⃣2️⃣ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1️⃣3️⃣ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1️⃣4️⃣ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1️⃣5️⃣ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1️⃣6️⃣ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1️⃣7️⃣ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1️⃣8️⃣ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1️⃣9️⃣ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2️⃣0️⃣ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1
Forwarded from Artificial Intelligence
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗛𝗶𝗿𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁𝘀😍

𝗔𝗽𝗽𝗹𝘆 𝗟𝗶𝗻𝗸𝘀:-👇

S&P Global :- https://pdlink.in/3ZddwVz

IBM :- https://pdlink.in/4kDmMKE

TVS Credit :- https://pdlink.in/4mI0JVc

Sutherland :- https://pdlink.in/4mGYBgg

Other Jobs :- https://pdlink.in/44qEIDu

Apply before the link expires 💫
𝟰 𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Want to Boost Your Resume with In-Demand Python Skills?👨‍💻

In today’s tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Hnx3wh

Enjoy Learning ✅️
Forwarded from Generative AI
𝗠𝗮𝘀𝘁𝗲𝗿 𝟲 𝗜𝗻-𝗗𝗲𝗺𝗮𝗻𝗱 𝗦𝗸𝗶𝗹𝗹𝘀 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘!😍

Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!👨‍💻

No need for expensive courses—start learning for FREE today!🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Ddxd7P

Don’t miss this opportunity—start learning today and take your skills to the next level!✅️
𝗦𝗤𝗟 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗙𝗼𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍

SQL is the backbone of data analytics. Whether you’re cleaning data, generating reports, or exploring trends—SQL helps you turn raw information into actionable insights.

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/43lI7CO

Use ChatGPT like a developer — not just a casual user✅️
Kavitha's Journey to become a Data Engineer 👇👇

1. Startup to Dream Job Journey:
- Started at a startup in India, transitioned to Infosys, then grabbed UK opportunity.
- Shifted from legacy Mainframe to AWS Cloud, pursued Master's from illinoisstateu, and secured dream job at Statefarm.
2. Learn Fundamentals:
- Assess skills, understand role.
- Gain proficiency in Python, SQL.
- Learn data technologies.
3. Database and Modeling Skills:
- Understand databases, gain proficiency.
- Learn data modeling principles.
4. Master ETL, Warehousing, and Visualization:
- Understand ETL, data warehousing.
- Gain experience in building warehouses.
- Familiarize with visualization tools.
- Got Certified as AWS Solutions Architect.
5. Utilize LinkedIn for Job Search:
- Network and connect with professionals.
- Showcase skills and achievements.
- Utilize job search feature, leading to dream job at Statefarm.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1
Data Lake vs Data Warehouse
2👍1