Join our WhatsApp channel for more data engineering resources
๐๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐2
Forwarded from Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
๐ฑ ๐๐ฅ๐๐ ๐๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐ธ๐๐ฟ๐ผ๐ฐ๐ธ๐ฒ๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
From mastering Cloud Computing to diving into Deep Learning, Docker, Big Data, and IoT Blockchain
IBM, one of the biggest tech companies, is offering 5 FREE courses that can seriously upgrade your resume and skills โ without costing you anything.
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/44GsWoC
Enroll For FREE & Get Certified โ
From mastering Cloud Computing to diving into Deep Learning, Docker, Big Data, and IoT Blockchain
IBM, one of the biggest tech companies, is offering 5 FREE courses that can seriously upgrade your resume and skills โ without costing you anything.
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/44GsWoC
Enroll For FREE & Get Certified โ
๐1
Lets say you have 5 TB of data stored in your Amazon S3 bucket consisting of 500 million records and 100 columns.
Now, suppose there are 100 cities and you want to get the data for a particular city, and you want to retrieve only 10 columns.
~ considering each city has equal amount of records,
we want to get 1% of data in terms of number of rows
and 10% in terms of columns
thats roughly 0.1% of the actual data which might be 5 GB roughly.
Now lets the pricing if you are using serverless technology like AWS Athena
- the worst case you end up having the data in a csv format (row based) with no compression. you end up scanning the entire 5 TB data and you pay $25 for this query. (The charges are $5 for each TB of data scanned)
Now lets try to improve it..
- use a columnar file format like parquet with snappy compression which takes lesser space so your 5 TB data might roughly become 2 TB (actually it will be even lesser)
- partition this based on city so that we have 1 folder for each city.
This way you have 2 TB data sitting across 100 folders, but you have to scan just one folder which is 20 GB,
Not just this you need 10 columns out of 100 so roughly you scan 10% of 20 GB (as we are using columnar file format)
This comes out to be 2 GB only.
so how much do we pay?
just $.01 which is 2500 times lesser than what you paid earlier.
This is how you save cost.
what we did?
- using columnar file formats for column pruning
- using partitioning for row pruning
- using efficient compression techniques
Join our WhatsApp channel for more data engineering resources
๐๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
Now, suppose there are 100 cities and you want to get the data for a particular city, and you want to retrieve only 10 columns.
~ considering each city has equal amount of records,
we want to get 1% of data in terms of number of rows
and 10% in terms of columns
thats roughly 0.1% of the actual data which might be 5 GB roughly.
Now lets the pricing if you are using serverless technology like AWS Athena
- the worst case you end up having the data in a csv format (row based) with no compression. you end up scanning the entire 5 TB data and you pay $25 for this query. (The charges are $5 for each TB of data scanned)
Now lets try to improve it..
- use a columnar file format like parquet with snappy compression which takes lesser space so your 5 TB data might roughly become 2 TB (actually it will be even lesser)
- partition this based on city so that we have 1 folder for each city.
This way you have 2 TB data sitting across 100 folders, but you have to scan just one folder which is 20 GB,
Not just this you need 10 columns out of 100 so roughly you scan 10% of 20 GB (as we are using columnar file format)
This comes out to be 2 GB only.
so how much do we pay?
just $.01 which is 2500 times lesser than what you paid earlier.
This is how you save cost.
what we did?
- using columnar file formats for column pruning
- using partitioning for row pruning
- using efficient compression techniques
Join our WhatsApp channel for more data engineering resources
๐๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐4๐ฅ1
SNOWFLAKES AND DATABRICKS
Snowflake and Databricks are leading cloud data platforms, but how do you choose the right one for your needs?
๐ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐
โ๏ธ ๐๐๐ญ๐ฎ๐ซ๐: Snowflake operates as a cloud-native data warehouse-as-a-service, streamlining data storage and management without the need for complex infrastructure setup.
โ๏ธ ๐๐ญ๐ซ๐๐ง๐ ๐ญ๐ก๐ฌ: It provides robust ELT (Extract, Load, Transform) capabilities primarily through its COPY command, enabling efficient data loading.
โ๏ธ Snowflake offers dedicated schema and file object definitions, enhancing data organization and accessibility.
โ๏ธ ๐ ๐ฅ๐๐ฑ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: One of its standout features is the ability to create multiple independent compute clusters that can operate on a single data copy. This flexibility allows for enhanced resource allocation based on varying workloads.
โ๏ธ ๐๐๐ญ๐ ๐๐ง๐ ๐ข๐ง๐๐๐ซ๐ข๐ง๐ : While Snowflake primarily adopts an ELT approach, it seamlessly integrates with popular third-party ETL tools such as Fivetran, Talend, and supports DBT installation. This integration makes it a versatile choice for organizations looking to leverage existing tools.
๐ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ
โ๏ธ ๐๐จ๐ซ๐: Databricks is fundamentally built around processing power, with native support for Apache Spark, making it an exceptional platform for ETL tasks. This integration allows users to perform complex data transformations efficiently.
โ๏ธ ๐๐ญ๐จ๐ซ๐๐ ๐: It utilizes a 'data lakehouse' architecture, which combines the features of a data lake with the ability to run SQL queries. This model is gaining traction as organizations seek to leverage both structured and unstructured data in a unified framework.
๐ ๐๐๐ฒ ๐๐๐ค๐๐๐ฐ๐๐ฒ๐ฌ
โ๏ธ ๐๐ข๐ฌ๐ญ๐ข๐ง๐๐ญ ๐๐๐๐๐ฌ: Both Snowflake and Databricks excel in their respective areas, addressing different data management requirements.
โ๏ธ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐โ๐ฌ ๐๐๐๐๐ฅ ๐๐ฌ๐ ๐๐๐ฌ๐: If you are equipped with established ETL tools like Fivetran, Talend, or Tibco, Snowflake could be the perfect choice. It efficiently manages the complexities of database infrastructure, including partitioning, scalability, and indexing.
โ๏ธ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ ๐๐จ๐ซ ๐๐จ๐ฆ๐ฉ๐ฅ๐๐ฑ ๐๐๐ง๐๐ฌ๐๐๐ฉ๐๐ฌ: Conversely, if your organization deals with a complex data landscape characterized by unpredictable sources and schemas, Databricksโwith its schema-on-read techniqueโmay be more advantageous.
๐ ๐๐จ๐ง๐๐ฅ๐ฎ๐ฌ๐ข๐จ๐ง:
Ultimately, the decision between Snowflake and Databricks should align with your specific data needs and organizational goals. Both platforms have established their niches, and understanding their strengths will guide you in selecting the right tool for your data strategy.
Snowflake and Databricks are leading cloud data platforms, but how do you choose the right one for your needs?
๐ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐
โ๏ธ ๐๐๐ญ๐ฎ๐ซ๐: Snowflake operates as a cloud-native data warehouse-as-a-service, streamlining data storage and management without the need for complex infrastructure setup.
โ๏ธ ๐๐ญ๐ซ๐๐ง๐ ๐ญ๐ก๐ฌ: It provides robust ELT (Extract, Load, Transform) capabilities primarily through its COPY command, enabling efficient data loading.
โ๏ธ Snowflake offers dedicated schema and file object definitions, enhancing data organization and accessibility.
โ๏ธ ๐ ๐ฅ๐๐ฑ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: One of its standout features is the ability to create multiple independent compute clusters that can operate on a single data copy. This flexibility allows for enhanced resource allocation based on varying workloads.
โ๏ธ ๐๐๐ญ๐ ๐๐ง๐ ๐ข๐ง๐๐๐ซ๐ข๐ง๐ : While Snowflake primarily adopts an ELT approach, it seamlessly integrates with popular third-party ETL tools such as Fivetran, Talend, and supports DBT installation. This integration makes it a versatile choice for organizations looking to leverage existing tools.
๐ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ
โ๏ธ ๐๐จ๐ซ๐: Databricks is fundamentally built around processing power, with native support for Apache Spark, making it an exceptional platform for ETL tasks. This integration allows users to perform complex data transformations efficiently.
โ๏ธ ๐๐ญ๐จ๐ซ๐๐ ๐: It utilizes a 'data lakehouse' architecture, which combines the features of a data lake with the ability to run SQL queries. This model is gaining traction as organizations seek to leverage both structured and unstructured data in a unified framework.
๐ ๐๐๐ฒ ๐๐๐ค๐๐๐ฐ๐๐ฒ๐ฌ
โ๏ธ ๐๐ข๐ฌ๐ญ๐ข๐ง๐๐ญ ๐๐๐๐๐ฌ: Both Snowflake and Databricks excel in their respective areas, addressing different data management requirements.
โ๏ธ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐โ๐ฌ ๐๐๐๐๐ฅ ๐๐ฌ๐ ๐๐๐ฌ๐: If you are equipped with established ETL tools like Fivetran, Talend, or Tibco, Snowflake could be the perfect choice. It efficiently manages the complexities of database infrastructure, including partitioning, scalability, and indexing.
โ๏ธ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ ๐๐จ๐ซ ๐๐จ๐ฆ๐ฉ๐ฅ๐๐ฑ ๐๐๐ง๐๐ฌ๐๐๐ฉ๐๐ฌ: Conversely, if your organization deals with a complex data landscape characterized by unpredictable sources and schemas, Databricksโwith its schema-on-read techniqueโmay be more advantageous.
๐ ๐๐จ๐ง๐๐ฅ๐ฎ๐ฌ๐ข๐จ๐ง:
Ultimately, the decision between Snowflake and Databricks should align with your specific data needs and organizational goals. Both platforms have established their niches, and understanding their strengths will guide you in selecting the right tool for your data strategy.
๐1
Data Engineering Tools:
Apache Hadoop ๐๏ธ โ Distributed storage and processing for big data
Apache Spark โก โ Fast, in-memory processing for large datasets
Airflow ๐ฆ โ Orchestrating complex data workflows
Kafka ๐ฆ โ Real-time data streaming and messaging
ETL Tools (e.g., Talend, Fivetran) ๐ โ Extract, transform, and load data pipelines
dbt ๐ง โ Data transformation and analytics engineering
Snowflake โ๏ธ โ Cloud-based data warehousing
Google BigQuery ๐ โ Managed data warehouse for big data analysis
Redshift ๐ด โ Amazonโs scalable data warehouse
MongoDB Atlas ๐ฟ โ Fully-managed NoSQL database service
React โค๏ธ for more
Free Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
Apache Hadoop ๐๏ธ โ Distributed storage and processing for big data
Apache Spark โก โ Fast, in-memory processing for large datasets
Airflow ๐ฆ โ Orchestrating complex data workflows
Kafka ๐ฆ โ Real-time data streaming and messaging
ETL Tools (e.g., Talend, Fivetran) ๐ โ Extract, transform, and load data pipelines
dbt ๐ง โ Data transformation and analytics engineering
Snowflake โ๏ธ โ Cloud-based data warehousing
Google BigQuery ๐ โ Managed data warehouse for big data analysis
Redshift ๐ด โ Amazonโs scalable data warehouse
MongoDB Atlas ๐ฟ โ Fully-managed NoSQL database service
React โค๏ธ for more
Free Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐2
๐ง๐๐ฆ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ข๐ป ๐๐ฎ๐๐ฎ ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐บ๐ฒ๐ป๐ - ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐
Want to know how top companies handle massive amounts of data without losing track? ๐
TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโit comes with a certificate! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jGFBw0
Just click and start learning!โ ๏ธ
Want to know how top companies handle massive amounts of data without losing track? ๐
TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโit comes with a certificate! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jGFBw0
Just click and start learning!โ ๏ธ
โค1๐1
big-book-of-data-engineering-2nd-edition-final.pdf
8.8 MB
The Big Book of Data Engineering
Databricks, 2nd ed, 2023
Databricks, 2nd ed, 2023
๐2๐ฅ1๐1
Data Analyst vs Data Engineer: Must-Know Differences
Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.
Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.
Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.
Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.
Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค1๐1