Cloud Computing For Beginners - 12th Edition, 2022.pdf
38.2 MB
Cloud Computing for Beginners
Papercut, 2022
Papercut, 2022
How Git Commands Work
Git can seem confusing at first, but a few key concepts make it clearer:
There are 4 locations for your code:
- Working Directory
- Staging Area
- Local Repository
- Remote Repository (like GitHub)
Basic commands move code between these locations
- git add stages changes
- git commit saves them locally
- git push shares them remotely
- git pull fetches updates from others
Branching allows isolated development.
Concepts like git clone, merge, rebase enable collaboration.
Graphical tools like GitHub Desktop also help by providing visual interfaces and shortcuts.
While advanced workflows are possible, understanding this basic flow unlocks Git's power.
Git can seem confusing at first, but a few key concepts make it clearer:
There are 4 locations for your code:
- Working Directory
- Staging Area
- Local Repository
- Remote Repository (like GitHub)
Basic commands move code between these locations
- git add stages changes
- git commit saves them locally
- git push shares them remotely
- git pull fetches updates from others
Branching allows isolated development.
Concepts like git clone, merge, rebase enable collaboration.
Graphical tools like GitHub Desktop also help by providing visual interfaces and shortcuts.
While advanced workflows are possible, understanding this basic flow unlocks Git's power.
👍2👏1
Azure_Data_Factory_by_Example_Practical_Implementation.pdf
10.8 MB
Azure Data Factory by Example
Richard Swinbank, 2021
Richard Swinbank, 2021
Azure Data Engineering Cookbook (SafefilekU.com).pdf
55.7 MB
Azure Data Engineering Cookbook
Nagaraj Venkatesan, 2022
Nagaraj Venkatesan, 2022
Google is looking for Data Engineer Intern 👇👇
https://www.linkedin.com/posts/sql-analysts_google-intern-googleanalytics-activity-7144931636453847041-OgA_?utm_source=share&utm_medium=member_android
https://www.linkedin.com/posts/sql-analysts_google-intern-googleanalytics-activity-7144931636453847041-OgA_?utm_source=share&utm_medium=member_android
Kavitha's Journey to become a Data Engineer 👇👇
1. Startup to Dream Job Journey:
- Started at a startup in India, transitioned to Infosys, then grabbed UK opportunity.
- Shifted from legacy Mainframe to AWS Cloud, pursued Master's from illinoisstateu, and secured dream job at Statefarm.
2. Learn Fundamentals:
- Assess skills, understand role.
- Gain proficiency in Python, SQL.
- Learn data technologies.
3. Database and Modeling Skills:
- Understand databases, gain proficiency.
- Learn data modeling principles.
4. Master ETL, Warehousing, and Visualization:
- Understand ETL, data warehousing.
- Gain experience in building warehouses.
- Familiarize with visualization tools.
- Got Certified as AWS Solutions Architect.
5. Utilize LinkedIn for Job Search:
- Network and connect with professionals.
- Showcase skills and achievements.
- Utilize job search feature, leading to dream job at Statefarm.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1. Startup to Dream Job Journey:
- Started at a startup in India, transitioned to Infosys, then grabbed UK opportunity.
- Shifted from legacy Mainframe to AWS Cloud, pursued Master's from illinoisstateu, and secured dream job at Statefarm.
2. Learn Fundamentals:
- Assess skills, understand role.
- Gain proficiency in Python, SQL.
- Learn data technologies.
3. Database and Modeling Skills:
- Understand databases, gain proficiency.
- Learn data modeling principles.
4. Master ETL, Warehousing, and Visualization:
- Understand ETL, data warehousing.
- Gain experience in building warehouses.
- Familiarize with visualization tools.
- Got Certified as AWS Solutions Architect.
5. Utilize LinkedIn for Job Search:
- Network and connect with professionals.
- Showcase skills and achievements.
- Utilize job search feature, leading to dream job at Statefarm.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
❤2👍2
🔍 Mastering Spark: 20 Interview Questions Demystified!
1️⃣ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2️⃣ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3️⃣ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4️⃣ RDD Operations: Explore the various RDD operations that power Spark.
5️⃣ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6️⃣ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7️⃣ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8️⃣ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9️⃣ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
🔟 spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1️⃣1️⃣ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1️⃣2️⃣ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1️⃣3️⃣ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1️⃣4️⃣ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1️⃣5️⃣ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1️⃣6️⃣ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1️⃣7️⃣ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1️⃣8️⃣ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1️⃣9️⃣ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2️⃣0️⃣ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1️⃣ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2️⃣ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3️⃣ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4️⃣ RDD Operations: Explore the various RDD operations that power Spark.
5️⃣ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6️⃣ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7️⃣ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8️⃣ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9️⃣ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
🔟 spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1️⃣1️⃣ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1️⃣2️⃣ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1️⃣3️⃣ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1️⃣4️⃣ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1️⃣5️⃣ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1️⃣6️⃣ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1️⃣7️⃣ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1️⃣8️⃣ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1️⃣9️⃣ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2️⃣0️⃣ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
Here's what the average data engineering interview looks like in 2024:
- 1 hour algorithms in Python
Here you will be asked irrelevant questions about dynamic programming, linked lists, and inverting trees
- 1 hour SQL
Here you will be asked niche questions about recursive CTEs that you've used once in your ten year career
- 1 hour data architecture
Here you will be asked about CAP theorem, lambda vs kappa, and a bunch of other things that ChatGPT probably could answer in a heartbeat
- 1 hour behavioral
Here you will be asked about how to play nicely with your coworkers. This is the most relevant interview in my opinion
- 1 hour project deep dive
Here you will be asked to make up a story about something you did or did not do in the past that was a technical marvel
- 4 hour take home assignment
Here you will be asked to build their entire data engineering stack from scratch over a weekend because why hire data engineers when you can submit them to tests?
- 1 hour algorithms in Python
Here you will be asked irrelevant questions about dynamic programming, linked lists, and inverting trees
- 1 hour SQL
Here you will be asked niche questions about recursive CTEs that you've used once in your ten year career
- 1 hour data architecture
Here you will be asked about CAP theorem, lambda vs kappa, and a bunch of other things that ChatGPT probably could answer in a heartbeat
- 1 hour behavioral
Here you will be asked about how to play nicely with your coworkers. This is the most relevant interview in my opinion
- 1 hour project deep dive
Here you will be asked to make up a story about something you did or did not do in the past that was a technical marvel
- 4 hour take home assignment
Here you will be asked to build their entire data engineering stack from scratch over a weekend because why hire data engineers when you can submit them to tests?
👍2
Hands-on Guide to Apache Spark 3 (2024).pdf
11.2 MB
Hands-on Guide to Apache Spark 3
Alfonso Antolínez García, 2023
Alfonso Antolínez García, 2023