Data Engineers
8.8K subscribers
343 photos
74 files
334 links
Free Data Engineering Ebooks & Courses
Download Telegram
๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ณ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ถ๐˜€ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ข๐—ฟ๐—ฎ๐—ฐ๐—น๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฃ๐—ฎ๐˜๐—ต!๐Ÿ˜

Want to start a career in Data Science but donโ€™t know where to begin?๐Ÿ‘‹

Oracle is offering a ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฃ๐—ฎ๐˜๐—ต to help you master the essential skills needed to become a ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ณ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Dka1ow

Start your journey today and become a certified Data Science Professional!โœ…๏ธ
๐Ÿ‘1
Data Engineering free courses   

Linked Data Engineering
๐ŸŽฌ Video Lessons
Rating โญ๏ธ: 5 out of 5     
Students ๐Ÿ‘จโ€๐ŸŽ“: 9,973
Duration โฐ:  8 weeks long
Source: openHPI
๐Ÿ”— Course Link  

Data Engineering
Credits โณ: 15
Duration โฐ: 4 hours
๐Ÿƒโ€โ™‚๏ธ Self paced       
Source:  Google cloud
๐Ÿ”— Course Link

Data Engineering Essentials using Spark, Python and SQL  
๐ŸŽฌ 402 video lesson
๐Ÿƒโ€โ™‚๏ธ Self paced
Teacher: itversity
Resource: Youtube
๐Ÿ”— Course Link  
 
Data engineering with Azure Databricks      
Modules โณ: 5
Duration โฐ:  4-5 hours worth of material
๐Ÿƒโ€โ™‚๏ธ Self paced       
Source:  Microsoft ignite
๐Ÿ”— Course Link

Perform data engineering with Azure Synapse Apache Spark Pools      
Modules โณ: 5
Duration โฐ:  2-3 hours worth of material
๐Ÿƒโ€โ™‚๏ธ Self paced       
Source:  Microsoft Learn
๐Ÿ”— Course Link

Books
Data Engineering
The Data Engineers Guide to Apache Spark

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ง๐—–๐—ฆ ๐—ถ๐—ข๐—ก ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€!๐Ÿ˜

Looking to boost your career with free online courses? ๐ŸŽ“

TCS iON, a leading digital learning platform from Tata Consultancy Services (TCS), offers a variety of free courses across multiple domains!๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Dc0K1S

Start learning today and take your career to the next level!โœ…๏ธ
Roadmap for becoming an Azure Data Engineer in 2025:

- SQL
- Basic python
- Cloud Fundamental
- ADF
- Databricks/Spark/Pyspark
- Azure Synapse
- Azure Functions, Logic Apps
- Azure Storage, Key Vault
- Dimensional Modelling
- Azure Fabric
- End-to-End Project
- Resume Preparation
- Interview Prep

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฌ๐—ผ๐˜‚ ๐—–๐—ฎ๐—ป ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—œ๐—ป ๐—ง๐—ผ๐—ฑ๐—ฎ๐˜†!๐Ÿ˜

In todayโ€™s fast-paced tech industry, staying ahead requires continuous learning and upskillingโœจ๏ธ

Fortunately, ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ is offering ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฐ๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฐ๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ that can help beginners and professionals enhance their ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐—ถ๐˜€๐—ฒ ๐—ถ๐—ป ๐—ฑ๐—ฎ๐˜๐—ฎ, ๐—”๐—œ, ๐—ฆ๐—ค๐—Ÿ, ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ without spending a dime!โฌ‡๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3DwqJRt

Start a career in tech, boost your resume, or improve your data skillsโœ…๏ธ
โค1๐Ÿ‘1
Spark Must-Know Differences:

โžค RDD vs DataFrame:
- RDD: Low-level API, unstructured data, more control.
- DataFrame: High-level API, optimized, structured data.

โžค DataFrame vs Dataset:
- DataFrame: Untyped API, ease of use, suitable for Python.
- Dataset: Typed API, compile-time safety, best with Scala/Java.

โžค map() vs flatMap():
- map(): Transforms each element, returns a new RDD with the same number of elements.
- flatMap(): Transforms each element and flattens the result, can return a different number of elements.

โžค filter() vs where():
- filter(): Filters rows based on a condition, commonly used in RDDs.
- where(): SQL-like filtering, more intuitive in DataFrames.

โžค collect() vs take():
- collect(): Retrieves the entire dataset to the driver.
- take(): Retrieves a specified number of rows, safer for large datasets.

โžค cache() vs persist():
- cache(): Stores data in memory only.
- persist(): Stores data with a specified storage level (memory, disk, etc.).

โžค select() vs selectExpr():
- select(): Selects columns with standard column expressions.
- selectExpr(): Selects columns using SQL expressions.

โžค join() vs union():
- join(): Combines rows from different DataFrames based on keys.
- union(): Combines rows from DataFrames with the same schema.

โžค withColumn() vs withColumnRenamed():
- withColumn(): Creates or replaces a column.
- withColumnRenamed(): Renames an existing column.

โžค groupBy() vs agg():
- groupBy(): Groups rows by a column or columns.
- agg(): Performs aggregate functions on grouped data.

โžคrepartition() vs coalesce():
- repartition(): Increases or decreases the number of partitions, performs a full shuffle.
- coalesce(): Reduces the number of partitions without a full shuffle, more efficient for reducing partitions.

โžค orderBy() vs sort():
- orderBy(): Returns a new DataFrame sorted by specified columns, supports both ascending and descending.
- sort(): Alias for orderBy(), identical in functionality.

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€! ๐Ÿ“Š๐Ÿš€

Want to master data analytics? Here are top free courses, books, and certifications to help you get started with Power BI, Tableau, Python, and Excel.

๐‹๐ข๐ง๐ค๐Ÿ‘‡
https://pdlink.in/41Fx3PW

All The Best ๐Ÿ’ฅ
10 Pyspark questions to clear your interviews.

1. How do you deploy PySpark applications in a production environment?
2. What are some best practices for monitoring and logging PySpark jobs?
3. How do you manage resources and scheduling in a PySpark application?
4. Write a PySpark job to perform a specific data processing task (e.g., filtering data, aggregating results).
5. You have a dataset containing user activity logs with missing values and inconsistent data types. Describe how you would clean and standardize this dataset using PySpark.
6. Given a dataset with nested JSON structures, how would you flatten it into a tabular format using PySpark?
8. Your PySpark job is running slower than expected due to data skew. Explain how you would identify and address this issue.
9. You need to join two large datasets, but the join operation is causing out-of-memory errors. What strategies would you use to optimize this join?
10. Describe how you would set up a real-time data pipeline using PySpark and Kafka to process streaming data

Remember: Donโ€™t just mug up these questions, practice them on your own to build problem-solving skills and clear interviews easily

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2โค1
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—บ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—˜๐˜…๐—ฐ๐—ฒ๐—น ๐—ถ๐—ป ๐—ท๐˜‚๐˜€๐˜ ๐Ÿณ ๐—ฑ๐—ฎ๐˜†๐˜€?

๐Ÿ“Š Here's a structured roadmap to help you go from beginner to pro in a week!

Whether you're learning formulas, functions, or data visualization, this guide covers everything step by step.

๐‹๐ข๐ง๐ค๐Ÿ‘‡ :-

https://pdlink.in/43lzybE

All The Best ๐Ÿ’ฅ
Apache Airflow Interview Questions: Basic, Intermediate and Advanced Levels

๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น:

โ€ข What is Apache Airflow, and why is it used?
โ€ข Explain the concept of Directed Acyclic Graphs (DAGs) in Airflow.
โ€ข How do you define tasks in Airflow?
โ€ข What are the different types of operators in Airflow?
โ€ข How can you schedule a DAG in Airflow?

๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—บ๐—ฒ๐—ฑ๐—ถ๐—ฎ๐˜๐—ฒ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น:

โ€ข How do you monitor and manage workflows in Airflow?
โ€ข Explain the difference between Airflow Sensors and Operators.
โ€ข What are XComs in Airflow, and how do you use them?
โ€ข How do you handle dependencies between tasks in a DAG?
โ€ข Explain the process of scaling Airflow for large-scale workflows.

๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น:

โ€ข How do you implement retry logic and error handling in Airflow tasks?
โ€ข Describe how you would set up and manage Airflow in a production environment.
โ€ข How can you customize and extend Airflow with plugins?
โ€ข Explain the process of dynamically generating DAGs in Airflow.
โ€ข Discuss best practices for optimizing Airflow performance and resource utilization.
โ€ข How do you manage and secure sensitive data within Airflow workflows?

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
Data-engineer-handbook

This is a repo with links to everything you'd ever want to learn about data engineering

Creator: DataExpert-io
Stars โญ๏ธ: 24.9k
Forked by: 4.9k

Github Repo:
https://github.com/DataExpert-io/data-engineer-handbook

#github
๐Ÿ‘1
V's of Big Data
๐Ÿ”ฅ1
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—”๐—œ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜? ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐—›๐—ผ๐˜„!๐Ÿ˜

Learn AI from scratch with these 6 YouTube channels! ๐ŸŽฏ

๐Ÿ’กWhether youโ€™re a beginner or an AI enthusiast, these top AI experts will guide you through AI fundamentals, deep learning, and real-world applications

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4iIxCy8

๐Ÿ“ข Start watching today and stay ahead in the AI revolution! ๐Ÿš€
โค2
Roadmap to Become DevOps Engineer ๐Ÿ‘จโ€๐Ÿ’ป

๐Ÿ“‚ Linux Basics
โ€ƒโˆŸ๐Ÿ“‚ Scripting Skills
โ€ƒโ€ƒโˆŸ๐Ÿ“‚ CI/CD Tools
โ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Containerization
โ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Cloud Platforms
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Build Projects
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโˆŸ โœ… Apply For Job
๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐—ถ๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ โ€“ ๐——๐—ผ๐—ปโ€™๐˜ ๐— ๐—ถ๐˜€๐˜€ ๐—ข๐˜‚๐˜!๐Ÿ˜

Want to learn Data Science, AI, Business, and more from Harvard University for FREE?๐ŸŽฏ

This is your chance to gain Ivy League knowledge without spending a dime!๐Ÿคฉ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FFFhPp
๐Ÿ’ก Whether youโ€™re a student, working professional, or just eager to learnโ€”

This is your golden opportunity!โœ…๏ธ
You will be 18x better at Azure Data Engineering

If you cover these topics:

1. Azure Fundamentals
โ€ข Cloud Computing Basics
โ€ข Azure Global Infrastructure
โ€ข Azure Regions and Availability Zones
โ€ข Resource Groups and Management

2. Azure Storage Solutions
โ€ข Azure Blob Storage
โ€ข Azure Data Lake Storage (ADLS)
โ€ข Azure SQL Database
โ€ข Cosmos DB

3. Data Ingestion and Integration
โ€ข Azure Data Factory
โ€ข Azure Event Hubs
โ€ข Azure Stream Analytics
โ€ข Azure Logic Apps

4. Big Data Processing
โ€ข Azure Databricks
โ€ข Azure HDInsight
โ€ข Azure Synapse Analytics
โ€ข Spark on Azure

5. Serverless Compute
โ€ข Azure Functions
โ€ข Azure Logic Apps
โ€ข Azure App Services
โ€ข Durable Functions

6. Data Warehousing
โ€ข Azure Synapse Analytics (formerly SQL Data Warehouse)
โ€ข Dedicated SQL Pool vs. Serverless SQL Pool
โ€ข Data Marts
โ€ข PolyBase

7. Data Modeling
โ€ข Star Schema
โ€ข Snowflake Schema
โ€ข Slowly Changing Dimensions
โ€ข Data Partitioning Strategies

8. ETL and ELT Pipelines
โ€ข Extract, Transform, Load (ETL) Patterns
โ€ข Extract, Load, Transform (ELT) Patterns
โ€ข Azure Data Factory Pipelines
โ€ข Data Flow Activities

9. Data Security
โ€ข Azure Key Vault
โ€ข Role-Based Access Control (RBAC)
โ€ข Data Encryption (At Rest, In Transit)
โ€ข Managed Identities

10. Monitoring and Logging
โ€ข Azure Monitor
โ€ข Azure Log Analytics
โ€ข Azure Application Insights
โ€ข Metrics and Alerts

11. Scalability and Performance
โ€ข Vertical vs. Horizontal Scaling
โ€ข Load Balancers
โ€ข Autoscaling
โ€ข Caching with Azure Redis Cache

12. Cost Management
โ€ข Azure Cost Management and Billing
โ€ข Reserved Instances and Spot VMs
โ€ข Cost Optimization Strategies
โ€ข Pricing Calculators

13. Networking
โ€ข Virtual Networks (VNets)
โ€ข VPN Gateway
โ€ข ExpressRoute
โ€ข Azure Firewall and NSGs

14. CI/CD in Azure
โ€ข Azure DevOps Pipelines
โ€ข Infrastructure as Code (IaC) with ARM Templates
โ€ข GitHub Actions
โ€ข Terraform on Azure

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4โค1
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ!๐Ÿ˜

Want to break into Data Analytics but donโ€™t know where to start?

These 6 FREE courses cover everythingโ€”from Excel, SQL, Python, and Power BI to Business Math & Statistics and Portfolio Projects! ๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kMSztw

๐Ÿ“Œ Save this now and start learning today!
20 recently asked ๐—ž๐—”๐—™๐—ž๐—” interview questions.

- How do you create a topic in Kafka using the Confluent CLI?
- Explain the role of the Schema Registry in Kafka.
- How do you register a new schema in the Schema Registry?
- What is the importance of key-value messages in Kafka?
- Describe a scenario where using a random key for messages is beneficial.
- Provide an example where using a constant key for messages is necessary.
- Write a simple Kafka producer code that sends JSON messages to a topic.
- How do you serialize a custom object before sending it to a Kafka topic?
- Describe how you can handle serialization errors in Kafka producers.
- Write a Kafka consumer code that reads messages from a topic and deserializes them from JSON.
- How do you handle deserialization errors in Kafka consumers?
- Explain the process of deserializing messages into custom objects.
- What is a consumer group in Kafka, and why is it important?
- Describe a scenario where multiple consumer groups are used for a single topic.
- How does Kafka ensure load balancing among consumers in a group?
- How do you send JSON data to a Kafka topic and ensure it is properly serialized?
- Describe the process of consuming JSON data from a Kafka topic and converting it to a usable format.
- Explain how you can work with CSV data in Kafka, including serialization and deserialization.
- Write a Kafka producer code snippet that sends CSV data to a topic.
- Write a Kafka consumer code snippet that reads and processes CSV data from a topic.

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
ETL vs ELT
โค11๐Ÿ‘5
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฆ๐—ผ๐—ณ๐˜ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐˜€๐˜€!๐Ÿ˜

Want to stand out in your career?

Soft skills are just as important as technical expertise! ๐ŸŒŸ

Here are 3 FREE courses to help you communicate, negotiate, and present with confidence

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/41V1Yqi

Tag someone who needs this boost! ๐Ÿš€
๐Ÿ‘1