Data Engineers
8.82K subscribers
345 photos
74 files
337 links
Free Data Engineering Ebooks & Courses
Download Telegram
Channel created
Tips to become a Data Engineer πŸ‘‡πŸ‘‡

1. Data Engineering Basics: At its core, it's about efficiently moving and reshaping data from one place/format to another.
2. Be Curious: The field is vast. Dive deep, ask questions, and always be in the mode of learning and experimenting.
3. Master Data: Understand the intricacies of data types, where they originate, and how they're structured.
4. Programming: Grasping a language is crucial. If you're unsure, start with Python – it's versatile and widely used in the industry.
5. SQL: A timeless tool for querying databases. Mastering SQL will empower you to work with data across various platforms.
6. Command Line: Familiarizing yourself with command line operations can save a lot of time, especially for quick and repetitive tasks.
7. Know Computers: A basic understanding of how computers communicate and process information can guide better data engineering decisions.
8. Personal Projects: Practical experience is invaluable. Start projects, learn from them, and showcase your work on platforms like GitHub.
9. APIs and JSON: Many modern data sources are API-based. Understanding how to extract and manipulate JSON data will be a daily task.
10. Tools Mastery: Get proficient with your primary tools, but stay updated with emerging technologies and platforms.
11. Data Storage Basics: Know the difference and use-cases for Databases, Data Lakes, and Data Warehouses. Understand the distinction between OLTP (online transaction processing) and OLAP (online analytical processing).
12. Cloud Platforms: The cloud is the future. AWS, Azure, and GCP offer free tiers to start experimenting.
13. Business Acumen: A data engineer who understands business metrics and their implications can offer more value.
14. Data Grain: Dive deep into datasets to understand their finest level of detail. It aids in more precise querying and analytics.
15. Data Formats: Recognizing main data formats (like JSON, XML, CSV, SQLite, Database) will help you navigate different datasets with ease.
πŸ‘4
FREE RESOURCES TO LEARN DATA ENGINEERING
πŸ‘‡πŸ‘‡

Big Data and Hadoop Essentials free course

https://bit.ly/3rLxbul

Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]

https://bit.ly/3fGRjLu

Understanding Data Engineering from Datacamp

https://clnk.in/soLY

Data Engineering Free Books

https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf

https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf

Big Data of Data Engineering Free book

https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf

https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf

The Data Engineer’s Guide to Apache Spark

https://t.me/datasciencefun/783?single

Data Engineering with Python

https://t.me/pythondevelopersindia/343

Data Engineering Projects -

1.End-To-End From Web Scraping to Tableau  https://lnkd.in/ePMw63ge

2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J

3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq

4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3

5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR

6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD

7. YouTube Data Analysis 
   (End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF

8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY

9. Sentiment analysis Twitter:
    Kafka and Spark Structured Streaming -  https://lnkd.in/esVAaqtU

ENJOY LEARNING πŸ‘πŸ‘
πŸ‘5
PySpark Cheat Sheet

A quick reference guide to the most commonly used patterns and functions in PySpark SQL.


Creator: kevinschaich
Stars ⭐️: 273
Forked By: 95
https://github.com/kevinschaich/pyspark-cheatsheet
❀2
big-book-of-data-engineering-2nd-edition-final.pdf
8.8 MB
The Big Book of Data Engineering
Databricks, 2nd ed, 2023
Top 4 NoSQL Databases
Cloud Computing For Beginners - 12th Edition, 2022.pdf
38.2 MB
Cloud Computing for Beginners
Papercut, 2022
How Git Commands Work

Git can seem confusing at first, but a few key concepts make it clearer:

There are 4 locations for your code:
- Working Directory
- Staging Area
- Local Repository
- Remote Repository (like GitHub)

Basic commands move code between these locations
- git add stages changes
- git commit saves them locally
- git push shares them remotely
- git pull fetches updates from others

Branching allows isolated development.

Concepts like git clone, merge, rebase enable collaboration.

Graphical tools like GitHub Desktop also help by providing visual interfaces and shortcuts.

While advanced workflows are possible, understanding this basic flow unlocks Git's power.
πŸ‘2πŸ‘1