๐ Data Engineering Roadmap 2025
๐ญ. ๐๐น๐ผ๐๐ฑ ๐ฆ๐ค๐ (๐๐ช๐ฆ ๐ฅ๐๐ฆ, ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐น๐ผ๐๐ฑ ๐ฆ๐ค๐, ๐๐๐๐ฟ๐ฒ ๐ฆ๐ค๐)
๐ก Why? Cloud-managed databases are the backbone of modern data platforms.
โ Serverless, scalable, and cost-efficient
โ Automated backups & high availability
โ Works seamlessly with cloud data pipelines
๐ฎ. ๐ฑ๐ฏ๐ (๐๐ฎ๐๐ฎ ๐๐๐ถ๐น๐ฑ ๐ง๐ผ๐ผ๐น) โ ๐ง๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐๐ง
๐ก Why? Transform data inside your warehouse (Snowflake, BigQuery, Redshift).
โ SQL-based transformation โ easy to learn
โ Version control & modular data modeling
โ Automates testing & documentation
๐ฏ. ๐๐ฝ๐ฎ๐ฐ๐ต๐ฒ ๐๐ถ๐ฟ๐ณ๐น๐ผ๐ โ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ ๐ข๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป
๐ก Why? Automate and schedule complex ETL/ELT workflows.
โ DAG-based orchestration for dependency management
โ Integrates with cloud services (AWS, GCP, Azure)
โ Highly scalable & supports parallel execution
๐ฐ. ๐๐ฒ๐น๐๐ฎ ๐๐ฎ๐ธ๐ฒ โ ๐ง๐ต๐ฒ ๐ฃ๐ผ๐๐ฒ๐ฟ ๐ผ๐ณ ๐๐๐๐ ๐ถ๐ป ๐๐ฎ๐๐ฎ ๐๐ฎ๐ธ๐ฒ๐
๐ก Why? Solves data consistency & reliability issues in Apache Spark & Databricks.
โ Supports ACID transactions in data lakes
โ Schema evolution & time travel
โ Enables incremental data processing
๐ฑ. ๐๐น๐ผ๐๐ฑ ๐๐ฎ๐๐ฎ ๐ช๐ฎ๐ฟ๐ฒ๐ต๐ผ๐๐๐ฒ๐ (๐ฆ๐ป๐ผ๐๐ณ๐น๐ฎ๐ธ๐ฒ, ๐๐ถ๐ด๐ค๐๐ฒ๐ฟ๐, ๐ฅ๐ฒ๐ฑ๐๐ต๐ถ๐ณ๐)
๐ก Why? Centralized, scalable, and powerful for analytics.
โ Handles petabytes of data efficiently
โ Pay-per-use pricing & serverless architecture
๐ฒ. ๐๐ฝ๐ฎ๐ฐ๐ต๐ฒ ๐๐ฎ๐ณ๐ธ๐ฎ โ ๐ฅ๐ฒ๐ฎ๐น-๐ง๐ถ๐บ๐ฒ ๐ฆ๐๐ฟ๐ฒ๐ฎ๐บ๐ถ๐ป๐ด
๐ก Why? For real-time event-driven architectures.
โ High-throughput
๐ณ. ๐ฃ๐๐๐ต๐ผ๐ป & ๐ฆ๐ค๐ โ ๐ง๐ต๐ฒ ๐๐ผ๐ฟ๐ฒ ๐ผ๐ณ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด
๐ก Why? Every data engineer must master these!
โ SQL for querying, transformations & performance tuning
โ Python for automation, data processing, and API integrations
๐ด. ๐๐ฎ๐๐ฎ๐ฏ๐ฟ๐ถ๐ฐ๐ธ๐ โ ๐จ๐ป๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ & ๐๐
๐ก Why? The go-to platform for big data processing & machine learning on the cloud.
โ Built on Apache Spark for fast distributed computing
๐ญ. ๐๐น๐ผ๐๐ฑ ๐ฆ๐ค๐ (๐๐ช๐ฆ ๐ฅ๐๐ฆ, ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐น๐ผ๐๐ฑ ๐ฆ๐ค๐, ๐๐๐๐ฟ๐ฒ ๐ฆ๐ค๐)
๐ก Why? Cloud-managed databases are the backbone of modern data platforms.
โ Serverless, scalable, and cost-efficient
โ Automated backups & high availability
โ Works seamlessly with cloud data pipelines
๐ฎ. ๐ฑ๐ฏ๐ (๐๐ฎ๐๐ฎ ๐๐๐ถ๐น๐ฑ ๐ง๐ผ๐ผ๐น) โ ๐ง๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐๐ง
๐ก Why? Transform data inside your warehouse (Snowflake, BigQuery, Redshift).
โ SQL-based transformation โ easy to learn
โ Version control & modular data modeling
โ Automates testing & documentation
๐ฏ. ๐๐ฝ๐ฎ๐ฐ๐ต๐ฒ ๐๐ถ๐ฟ๐ณ๐น๐ผ๐ โ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ ๐ข๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป
๐ก Why? Automate and schedule complex ETL/ELT workflows.
โ DAG-based orchestration for dependency management
โ Integrates with cloud services (AWS, GCP, Azure)
โ Highly scalable & supports parallel execution
๐ฐ. ๐๐ฒ๐น๐๐ฎ ๐๐ฎ๐ธ๐ฒ โ ๐ง๐ต๐ฒ ๐ฃ๐ผ๐๐ฒ๐ฟ ๐ผ๐ณ ๐๐๐๐ ๐ถ๐ป ๐๐ฎ๐๐ฎ ๐๐ฎ๐ธ๐ฒ๐
๐ก Why? Solves data consistency & reliability issues in Apache Spark & Databricks.
โ Supports ACID transactions in data lakes
โ Schema evolution & time travel
โ Enables incremental data processing
๐ฑ. ๐๐น๐ผ๐๐ฑ ๐๐ฎ๐๐ฎ ๐ช๐ฎ๐ฟ๐ฒ๐ต๐ผ๐๐๐ฒ๐ (๐ฆ๐ป๐ผ๐๐ณ๐น๐ฎ๐ธ๐ฒ, ๐๐ถ๐ด๐ค๐๐ฒ๐ฟ๐, ๐ฅ๐ฒ๐ฑ๐๐ต๐ถ๐ณ๐)
๐ก Why? Centralized, scalable, and powerful for analytics.
โ Handles petabytes of data efficiently
โ Pay-per-use pricing & serverless architecture
๐ฒ. ๐๐ฝ๐ฎ๐ฐ๐ต๐ฒ ๐๐ฎ๐ณ๐ธ๐ฎ โ ๐ฅ๐ฒ๐ฎ๐น-๐ง๐ถ๐บ๐ฒ ๐ฆ๐๐ฟ๐ฒ๐ฎ๐บ๐ถ๐ป๐ด
๐ก Why? For real-time event-driven architectures.
โ High-throughput
๐ณ. ๐ฃ๐๐๐ต๐ผ๐ป & ๐ฆ๐ค๐ โ ๐ง๐ต๐ฒ ๐๐ผ๐ฟ๐ฒ ๐ผ๐ณ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด
๐ก Why? Every data engineer must master these!
โ SQL for querying, transformations & performance tuning
โ Python for automation, data processing, and API integrations
๐ด. ๐๐ฎ๐๐ฎ๐ฏ๐ฟ๐ถ๐ฐ๐ธ๐ โ ๐จ๐ป๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ & ๐๐
๐ก Why? The go-to platform for big data processing & machine learning on the cloud.
โ Built on Apache Spark for fast distributed computing
โค1
Forwarded from Python Projects & Resources
๐๐๐ซ๐ง ๐
๐๐๐ ๐๐ซ๐๐๐ฅ๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐๐๐๐ โ ๐๐ฅ๐จ๐ฎ๐, ๐๐ & ๐๐๐ญ๐!๐
Oracleโs Race to Certification is here โ your chance to earn globally recognized certifications for FREE!๐ฅ
๐ก Choose from in-demand certifications in:
โ๏ธ Cloud
๐ค AI
๐ Data
โฆand more!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lx2tin
โกBut hurry โ spots are limited, and the clock is ticking!โ ๏ธ
Oracleโs Race to Certification is here โ your chance to earn globally recognized certifications for FREE!๐ฅ
๐ก Choose from in-demand certifications in:
โ๏ธ Cloud
๐ค AI
๐ Data
โฆand more!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lx2tin
โกBut hurry โ spots are limited, and the clock is ticking!โ ๏ธ
โค2
๐๐ ๐ฒ๐จ๐ฎ'๐ซ๐ ๐ ๐๐๐ญ๐ ๐๐ง๐ ๐ข๐ง๐๐๐ซ ๐ฐ๐จ๐ซ๐ค๐ข๐ง๐ ๐ฐ๐ข๐ญ๐ก ๐๐ข๐ ๐๐๐ญ๐ - ๐๐ฒ๐๐ฉ๐๐ซ๐ค ๐ข๐ฌ ๐ฒ๐จ๐ฎ๐ซ ๐๐๐ฌ๐ญ ๐๐ซ๐ข๐๐ง๐.โฃ
โฃ
Whether you're building data pipelines, transforming terabytes of logs, or cleaning data for analytics, PySpark helps you scale Python across distributed systems with ease.โฃ
โฃ
Here are a few PySpark fundamentals every Data Engineer should be confident with:โฃ
โฃ
๐. ๐๐๐๐๐ข๐ง๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒโฃ
โฃ
spark.read.csv(), json(), parquet()โฃ
โฃ
Choose the right format for performance.โฃ
โฃ
๐. ๐๐จ๐ซ๐ ๐ญ๐ซ๐๐ง๐ฌ๐๐จ๐ซ๐ฆ๐๐ญ๐ข๐จ๐ง๐ฌโฃ
โฃ
map, flatMap, filter, unionโฃ
โฃ
Understand how these shape your RDDs or DataFrames.โฃ
โฃ
๐. ๐๐ ๐ ๐ซ๐๐ ๐๐ญ๐ข๐จ๐ง๐ฌ ๐๐ญ ๐ฌ๐๐๐ฅ๐โฃ
โฃ
groupBy, agg, .count()โฃ
โฃ
Use them to build clean summaries and insights from raw data.โฃ
โฃ
๐. ๐๐จ๐ฅ๐ฎ๐ฆ๐ง ๐ฆ๐๐ง๐ข๐ฉ๐ฎ๐ฅ๐๐ญ๐ข๐จ๐ง๐ฌโฃ
โฃ
withColumn() is a go-to tool for feature engineering or adding derived columns.โฃ
โฃ
Data Engineering is about building scalable, reliable, and efficient systems-and PySpark makes that possible when you're working with huge datasets.
React โฅ๏ธ for more
โฃ
Whether you're building data pipelines, transforming terabytes of logs, or cleaning data for analytics, PySpark helps you scale Python across distributed systems with ease.โฃ
โฃ
Here are a few PySpark fundamentals every Data Engineer should be confident with:โฃ
โฃ
๐. ๐๐๐๐๐ข๐ง๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒโฃ
โฃ
spark.read.csv(), json(), parquet()โฃ
โฃ
Choose the right format for performance.โฃ
โฃ
๐. ๐๐จ๐ซ๐ ๐ญ๐ซ๐๐ง๐ฌ๐๐จ๐ซ๐ฆ๐๐ญ๐ข๐จ๐ง๐ฌโฃ
โฃ
map, flatMap, filter, unionโฃ
โฃ
Understand how these shape your RDDs or DataFrames.โฃ
โฃ
๐. ๐๐ ๐ ๐ซ๐๐ ๐๐ญ๐ข๐จ๐ง๐ฌ ๐๐ญ ๐ฌ๐๐๐ฅ๐โฃ
โฃ
groupBy, agg, .count()โฃ
โฃ
Use them to build clean summaries and insights from raw data.โฃ
โฃ
๐. ๐๐จ๐ฅ๐ฎ๐ฆ๐ง ๐ฆ๐๐ง๐ข๐ฉ๐ฎ๐ฅ๐๐ญ๐ข๐จ๐ง๐ฌโฃ
โฃ
withColumn() is a go-to tool for feature engineering or adding derived columns.โฃ
โฃ
Data Engineering is about building scalable, reliable, and efficient systems-and PySpark makes that possible when you're working with huge datasets.
React โฅ๏ธ for more
โค1
๐ฏ ๐๐ฎ๐บ๐ฒ-๐๐ต๐ฎ๐ป๐ด๐ถ๐ป๐ด ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐๐๐ต๐ผ๐ป ๐ณ๐ผ๐ฟ ๐๐ฟ๐ฒ๐ฒ๐
Want to break into Data Science or Tech?
Python is the #1 skill you need โ and starting is easier than you think.๐งโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3JemBIt
Your career upgrade starts today โ no excuses!โ ๏ธ
Want to break into Data Science or Tech?
Python is the #1 skill you need โ and starting is easier than you think.๐งโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3JemBIt
Your career upgrade starts today โ no excuses!โ ๏ธ
Roadmap to Become a Data Engineer in 10 Stages
Stage 1 โ SQL & Database Fundamentals
Stage 2 โ Python for Data Engineering (Pandas, PySpark)
Stage 3 โ Data Modelling & ETL/ELT Design (Star Schema, CDC, DWH)
Stage 4 โ Big Data Tools (Apache Spark, Kafka, Hive)
Stage 5 โ Cloud Platforms (Azure / AWS / GCP)
Stage 6 โ Data Orchestration (Airflow, ADF, Prefect, DBT)
Stage 7 โ Data Lakes & Warehouses (Delta Lake, Snowflake, BigQuery)
Stage 8 โ Monitoring, Testing & Governance (Great Expectations, DataDog)
Stage 9 โ Real-Time Pipelines (Kafka, Flink, Kinesis)
Stage 10 โ CI/CD & DevOps for Data (GitHub Actions, Terraform, Docker)
๐ You donโt need to learn everything at once.
๐ Build around one stack, skip a few steps if youโre just starting out.
๐ Master fundamentals first, then move to the cloud.
The key is consistency โ take it step by step and grow your skill set!
Stage 1 โ SQL & Database Fundamentals
Stage 2 โ Python for Data Engineering (Pandas, PySpark)
Stage 3 โ Data Modelling & ETL/ELT Design (Star Schema, CDC, DWH)
Stage 4 โ Big Data Tools (Apache Spark, Kafka, Hive)
Stage 5 โ Cloud Platforms (Azure / AWS / GCP)
Stage 6 โ Data Orchestration (Airflow, ADF, Prefect, DBT)
Stage 7 โ Data Lakes & Warehouses (Delta Lake, Snowflake, BigQuery)
Stage 8 โ Monitoring, Testing & Governance (Great Expectations, DataDog)
Stage 9 โ Real-Time Pipelines (Kafka, Flink, Kinesis)
Stage 10 โ CI/CD & DevOps for Data (GitHub Actions, Terraform, Docker)
๐ You donโt need to learn everything at once.
๐ Build around one stack, skip a few steps if youโre just starting out.
๐ Master fundamentals first, then move to the cloud.
The key is consistency โ take it step by step and grow your skill set!
โค1
๐ ๐๐๐ฌ๐ญ ๐๐จ๐ฐ๐๐ซ ๐๐ ๐๐จ๐ฎ๐ซ๐ฌ๐๐ฌ ๐ข๐ง ๐๐๐๐ ๐ญ๐จ ๐๐ค๐ฒ๐ซ๐จ๐๐ค๐๐ญ ๐๐จ๐ฎ๐ซ ๐๐๐ซ๐๐๐ซ๐
In todayโs data-driven world, Power BI has become one of the most in-demand tools for businessesใฝ๏ธ๐
The best part? You donโt need to spend a fortuneโthere are free and affordable courses available online to get you started.๐ฅ๐งโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4mDvgDj
Start learning today and position yourself for success in 2025!โ ๏ธ
In todayโs data-driven world, Power BI has become one of the most in-demand tools for businessesใฝ๏ธ๐
The best part? You donโt need to spend a fortuneโthere are free and affordable courses available online to get you started.๐ฅ๐งโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4mDvgDj
Start learning today and position yourself for success in 2025!โ ๏ธ
โค1