Data Engineers
8.65K subscribers
318 photos
73 files
324 links
Free Data Engineering Ebooks & Courses
Download Telegram
๐Ÿ“Š Data Science Summarized: The Core Pillars of Success! ๐Ÿš€

โœ… 1๏ธโƒฃ Statistics:
The backbone of data analysis and decision-making.
Used for hypothesis testing, distributions, and drawing actionable insights.

โœ… 2๏ธโƒฃ Mathematics:
Critical for building models and understanding algorithms.
Focus on:
Linear Algebra
Calculus
Probability & Statistics

โœ… 3๏ธโƒฃ Python:
The most widely used language in data science.
Essential libraries include:
Pandas
NumPy
Scikit-Learn
TensorFlow

โœ… 4๏ธโƒฃ Machine Learning:
Use algorithms to uncover patterns and make predictions.
Key types:
Regression
Classification
Clustering

โœ… 5๏ธโƒฃ Domain Knowledge:
Context matters.
Understand your industry to build relevant, useful, and accurate models.
โค1
Greetings from PVR Cloud Tech!! ๐ŸŒˆ

We will be starting Full Stack Data Engineering on 19th July 2025, from 10:00 AM to 12:00 PM IST (Saturday).

These sessions are exclusively designed for beginners entering the software industry and individuals transitioning from non-IT to IT backgrounds. Data engineers are the backbone of modern businesses.

โœ… Course Content :

https://drive.google.com/file/d/1yejI95UAC5DdD2X83Qiu14pnfpUVX6_l/view?usp=sharing

๐Ÿ”ฅ Interested candidates, please fill out the form below and join the WhatsApp Group.

https://forms.gle/B2JD2ZUvpwfUtPZN6

https://chat.whatsapp.com/Cdr0oDSoaGZIyoIAkmlOAa

https://www.whatsapp.com/channel/0029Vb60rGU8V0thkpbFFW2n

Please share these details with your friends as these sessions may help them transform their careers, and you will be a part of it by providing information.

Thanks,
Team,PVR Cloud Tech
+91-9346060794
โค1
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ & ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Science & Analytics but donโ€™t want to spend on expensive courses?๐Ÿ‘จโ€๐Ÿ’ป

Start here โ€” with 100% FREE courses from Cisco, IBM, Google & LinkedIn, all with certificates you can showcase on LinkedIn or your resume!๐Ÿ“š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Ix2oxd

This list will set you up with real-world, job-ready skillsโœ…๏ธ
โค1
๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—™๐—”๐—”๐—ก๐—š ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜!๐Ÿ˜

If youโ€™re serious about cracking top tech interviews โ€” from FAANG to startups โ€” this is the roadmap you canโ€™t afford to miss๐ŸŽŠ

Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ€” completely free๐Ÿคฉ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3TJlpyW

Your dream job might just start here.โœ…๏ธ
โค1
Hereโ€™s a detailed breakdown of critical roles and their associated responsibilities:


๐Ÿ”˜ Data Engineer: Tailored for Data Enthusiasts

1. Data Ingestion: Acquire proficiency in data handling techniques.
2. Data Validation: Master the art of data quality assurance.
3. Data Cleansing: Learn advanced data cleaning methodologies.
4. Data Standardisation: Grasp the principles of data formatting.
5. Data Curation: Efficiently organise and manage datasets.

๐Ÿ”˜ Data Scientist: Suited for Analytical Minds

6. Feature Extraction: Hone your skills in identifying data patterns.
7. Feature Selection: Master techniques for efficient feature selection.
8. Model Exploration: Dive into the realm of model selection methodologies.

๐Ÿ”˜ Data Scientist & ML Engineer: Designed for Coding Enthusiasts

9. Coding Proficiency: Develop robust programming skills.
10. Model Training: Understand the intricacies of model training.
11. Model Validation: Explore various model validation techniques.
12. Model Evaluation: Master the art of evaluating model performance.
13. Model Refinement: Refine and improve candidate models.
14. Model Selection: Learn to choose the most suitable model for a given task.

๐Ÿ”˜ ML Engineer: Tailored for Deployment Enthusiasts

15. Model Packaging: Acquire knowledge of essential packaging techniques.
16. Model Registration: Master the process of model tracking and registration.
17. Model Containerisation: Understand the principles of containerisation.
18. Model Deployment: Explore strategies for effective model deployment.

These roles encompass diverse facets of Data and ML, catering to various interests and skill sets. Delve into these domains, identify your passions, and customise your learning journey accordingly.
โค2
๐Ÿฐ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to break into data science in 2025โ€”without spending a single rupee?๐Ÿ’ฐ๐Ÿ‘จโ€๐Ÿ’ป

Youโ€™re in luck! Microsoft is offering powerful, beginner-friendly resources that teach you everything from Python fundamentals to AI and data analyticsโ€”for free๐Ÿคฉโœ”๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vCIrb

Level up your career in the booming field of dataโœ…๏ธ
โค1
ETL vs REVERSE ETL vs ELT
โค2
Forwarded from Artificial Intelligence
๐Ÿฐ ๐— ๐˜‚๐˜€๐˜-๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐˜๐˜‚๐—ฑ๐—ฒ๐—ป๐˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

If youโ€™re starting your data analytics journey, these 4 YouTube courses are pure gold โ€” and the best part? ๐Ÿ’ป๐Ÿคฉ

Theyโ€™re completely free๐Ÿ’ฅ๐Ÿ’ฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44DvNP1

Each course can help you build the right foundation for a successful tech careerโœ…๏ธ
โค1
๐Š๐ฎ๐›๐ž๐ซ๐ง๐ž๐ญ๐ž๐ฌ ๐“๐ž๐œ๐ก ๐’๐ญ๐š๐œ๐ค

What it is: A powerful open-source platform designed to automate deploying, scaling, and operating application containers.

๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ ๐Œ๐š๐ง๐š๐ ๐ž๐ฆ๐ž๐ง๐ญ:
- Organizes containers into groups for easier management.
- Automates tasks like scaling and load balancing.

๐‚๐จ๐ง๐ญ๐š๐ข๐ง๐ž๐ซ ๐‘๐ฎ๐ง๐ญ๐ข๐ฆ๐ž:
- Software responsible for launching and managing containers.
- Ensures containers run efficiently and securely.

๐’๐ž๐œ๐ฎ๐ซ๐ข๐ญ๐ฒ:
- Implements measures to protect against unauthorized access and malicious activities.
- Includes features like role-based access control and encryption.

๐Œ๐จ๐ง๐ข๐ญ๐จ๐ซ๐ข๐ง๐  & ๐Ž๐›๐ฌ๐ž๐ซ๐ฏ๐š๐›๐ข๐ฅ๐ข๐ญ๐ฒ:
- Tools to monitor system health, performance, and resource usage.
- Helps identify and troubleshoot issues quickly.

๐๐ž๐ญ๐ฐ๐จ๐ซ๐ค๐ข๐ง๐ :
- Manages network communication between containers and external systems.
- Ensures connectivity and security between different parts of the system.

๐ˆ๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐Ž๐ฉ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง๐ฌ:
- Handles tasks related to the underlying infrastructure, such as provisioning and scaling.
- Automates repetitive tasks to streamline operations and improve efficiency.

- ๐Š๐ž๐ฒ ๐œ๐จ๐ฆ๐ฉ๐จ๐ง๐ž๐ง๐ญ๐ฌ:
- Cluster Management: Handles grouping and managing multiple containers.
- Container Runtime: Software that runs containers and manages their lifecycle.
- Security: Implements measures to protect containers and the overall system.
- Monitoring & Observability: Tools to track and understand system behavior and performance.
- Networking: Manages communication between containers and external networks.
- Infrastructure Operations: Handles tasks like provisioning, scaling, and maintaining the underlying infrastructure.
โค2
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐—ง๐—ผ๐—ฝ ๐—ข๐—ฟ๐—ด๐—ฎ๐—ป๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

A power-packed selection of 100% free, certified courses from top institutions:

- Data Analytics โ€“ Cisco
- Digital Marketing โ€“ Google
- Python for AI โ€“ IBM/edX
- SQL & Databases โ€“ Stanford
- Generative AI โ€“ Google Cloud
- Machine Learning โ€“ Harvard

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 
 
https://pdlink.in/3FcwrZK
 
Master inโ€‘demand tech skills with these 6 certified, top-tier free courses
โค1
๐Ÿš€ ๐Ÿณ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ + ๐—Ÿ๐—ถ๐—ป๐—ธ๐—ฒ๐—ฑ๐—œ๐—ป ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐Ÿ˜

Gain globally recognized skills with Microsoft x LinkedIn Career Essentials โ€“ completely FREE!

๐ŸŽฏ Top Certifications:
๐Ÿ”น Generative AI
๐Ÿ”น Data Analysis
๐Ÿ”น Software Development
๐Ÿ”น Project Management
๐Ÿ”น Business Analysis
๐Ÿ”น System Administration
๐Ÿ”น Administrative Assistance

๐Ÿ“š 100% Free | Self-Paced | Industry-Aligned

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 
 
https://pdlink.in/46TZP2h
 
๐Ÿ’ผ Perfect for students, freshers & working professionals
โค1
Netflix Analytics Engineer Interview Question (SQL) ๐Ÿš€
---

### Scenario Overview
Netflix wants to analyze user engagement with their platform. Imagine you have a table called netflix_data with the following columns:
- user_id: Unique identifier for each user
- subscription_plan: Type of subscription (e.g., Basic, Standard, Premium)
- genre: Genre of the content the user watched (e.g., Drama, Comedy, Action)
- timestamp: Date and time when the user watched a show
- watch_duration: Length of time (in minutes) a user spent watching
- country: Userโ€™s country

The main objective is to figure out how to get insights into user behavior, such as which genres are most popular or how watch duration varies across subscription plans.

---

### Typical Interview Question

> โ€œUsing the netflix_data table, find the top 3 genres by average watch duration in each subscription plan, and return both the genre and the average watch duration.โ€

This question tests your ability to:
1. Filter or group data by subscription plan.
2. Calculate average watch duration within each group.
3. Sort results to find the โ€œtop 3โ€ within each group.
4. Handle tie situations or edge cases (e.g., if there are fewer than 3 genres).

---

### Step-by-Step Approach

1. Group and Aggregate
Use the GROUP BY clause to group by subscription_plan and genre. Then, use an aggregate function like AVG(watch_duration) to get the average watch time for each combination.

2. Rank Genres
You can utilize a window functionโ€”commonly ROW_NUMBER() or RANK()โ€”to assign a ranking to each genre within its subscription plan, based on the average watch duration. For example:

   AVG(watch_duration) OVER (PARTITION BY subscription_plan ORDER BY AVG(watch_duration) DESC)

(Note that in many SQL dialects, youโ€™ll need a subquery because you canโ€™t directly apply an aggregate in the ORDER BY of a window function.)

3. Select Top 3
After ranking rows in each partition (i.e., subscription plan), pick only the top 3 by watch duration. This could look like:

   SELECT subscription_plan,
genre,
avg_watch_duration
FROM (
SELECT subscription_plan,
genre,
AVG(watch_duration) AS avg_watch_duration,
ROW_NUMBER() OVER (
PARTITION BY subscription_plan
ORDER BY AVG(watch_duration) DESC
) AS rn
FROM netflix_data
GROUP BY subscription_plan, genre
) ranked
WHERE rn <= 3;


4. Validate Results
- Make sure each subscription plan returns up to 3 genres.
- Check for potential ties. Depending on the question, you might use RANK() or DENSE_RANK() to handle ties differently.
- Confirm the data type and units for watch_duration (minutes, seconds, etc.).

---

### Key Takeaways
- Window Functions: Essential for ranking or partitioning data.
- Aggregations & Grouping: A foundational concept for Analytics Engineers.
- Data Validation: Always confirm youโ€™re interpreting columns (like watch_duration) correctly.

By mastering these techniques, youโ€™ll be better prepared for SQL interview questions that delve into real-world scenariosโ€”especially at a data-driven company like Netflix.
โค5
๐—ง๐—ถ๐—ฟ๐—ฒ๐—ฑ ๐—ผ๐—ณ ๐˜€๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐—ณ๐—ถ๐—ป๐—ฑ ๐—ด๐—ผ๐—ผ๐—ฑ ๐—”๐—œ/๐— ๐—Ÿ ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—ฝ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ?๐Ÿ˜

Stop wasting hours searching โ€” hereโ€™s a GOLDMINE ๐Ÿ’Ž

โœ… 500+ Real-World Projects with Code
โœ… Covers NLP, Computer Vision, Deep Learning, ML Pipelines
โœ… Beginner to Advanced Levels
โœ… Resume-Worthy, Interview-Ready!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45gTMU8

โœจSave this. Share this. Start building.โœ…๏ธ
โค1
Polymorphism in Python ๐Ÿ‘†
โค2