Data Engineers
8.64K subscribers
311 photos
74 files
317 links
Free Data Engineering Ebooks & Courses
Download Telegram
Top 10 Python functions that are commonly used in data analysis

import pandas as pd: This function is used to import the Pandas library, which is essential for data manipulation and analysis.

read_csv(): This function from Pandas is used to read data from CSV files into a DataFrame, a primary data structure for data analysis.

head(): It allows you to quickly preview the first few rows of a DataFrame to understand its structure.

describe(): This function provides summary statistics of the numeric columns in a DataFrame, such as mean, standard deviation, and percentiles.

groupby(): It's used to group data by one or more columns, enabling aggregation and analysis within those groups.

pivot_table(): This function helps in creating pivot tables, allowing you to summarize and reshape data for analysis.

fillna(): Useful for filling missing values in a DataFrame with a specified value or a calculated one (e.g., mean or median).

apply(): This function is used to apply custom functions to DataFrame columns or rows, which is handy for data transformation.

plot(): It's part of the Matplotlib library and is used for creating various data visualizations, such as line plots, bar charts, and scatter plots.

merge(): This function is used for combining two or more DataFrames based on a common column or index, which is crucial for joining datasets during analysis.

These functions are essential tools for any data analyst working with Python for data analysis tasks.

Hope it helps :)
โค3
Forwarded from Artificial Intelligence
๐—ช๐—ถ๐—ฝ๐—ฟ๐—ผโ€™๐˜€ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—”๐—ฐ๐—ฐ๐—ฒ๐—น๐—ฒ๐—ฟ๐—ฎ๐˜๐—ผ๐—ฟ: ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—™๐—ฎ๐˜€๐˜-๐—ง๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐˜๐—ผ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ!๐Ÿ˜

Want to break into Data Science but donโ€™t have a degree or years of experience? Wipro just made it easier than ever!๐Ÿ‘จโ€๐ŸŽ“โœจ๏ธ

With the Wipro Data Science Accelerator, you can start learning for FREEโ€”no fancy credentials needed. Whether youโ€™re a beginner or an aspiring data professional๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4hOXcR7

Ready to start? Explore Wiproโ€™s Data Science Accelerator hereโœ…๏ธ
โค1
Essential Data Science Concepts Everyone Should Know:

1. Data Types and Structures:

โ€ข Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)

โ€ข Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)

โ€ข Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)

2. Descriptive Statistics:

โ€ข Measures of Central Tendency: Mean, Median, Mode (describing the typical value)

โ€ข Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)

โ€ข Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)

3. Probability and Statistics:

โ€ข Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)

โ€ข Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)

โ€ข Confidence Intervals: Estimating the range of plausible values for a population parameter

4. Machine Learning:

โ€ข Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)

โ€ข Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)

โ€ข Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)

5. Data Cleaning and Preprocessing:

โ€ข Missing Value Handling: Imputation, Deletion (dealing with incomplete data)

โ€ข Outlier Detection and Removal: Identifying and addressing extreme values

โ€ข Feature Engineering: Creating new features from existing ones (e.g., combining variables)

6. Data Visualization:

โ€ข Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)

โ€ข Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)

7. Ethical Considerations in Data Science:

โ€ข Data Privacy and Security: Protecting sensitive information

โ€ข Bias and Fairness: Ensuring algorithms are unbiased and fair

8. Programming Languages and Tools:

โ€ข Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn

โ€ข R: Statistical programming language with strong visualization capabilities

โ€ข SQL: For querying and manipulating data in databases

9. Big Data and Cloud Computing:

โ€ข Hadoop and Spark: Frameworks for processing massive datasets

โ€ข Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)

10. Domain Expertise:

โ€ข Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis

โ€ข Problem Framing: Defining the right questions and objectives for data-driven decision making

Bonus:

โ€ข Data Storytelling: Communicating insights and findings in a clear and engaging manner

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1
๐—›๐—ถ๐—ฑ๐—ฑ๐—ฒ๐—ป ๐—š๐—ฒ๐—บ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐— ๐—œ๐—ง, ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ & ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ!๐Ÿ˜

Still searching for quality learning resources?๐Ÿ“š

What if I told you thereโ€™s a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard โ€” and most people have never even heard of it? ๐Ÿคฏ

๐—Ÿ๐—ถ๐—ป๐—ธ๐˜€:-๐Ÿ‘‡

https://pdlink.in/4lN7aF1

Donโ€™t skip this chanceโœ…๏ธ
Data Engineering Roadmap
โค4
๐Ÿฏ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ!๐Ÿ˜

Want to break into Data Analytics but donโ€™t know where to start? ๐Ÿค”

These 3 beginner-friendly and 100% FREE courses will help you build real skills โ€” no degree required!๐Ÿ‘จโ€๐ŸŽ“

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/3IohnJO

No confusion, no fluff โ€” just pure valueโœ…๏ธ
Most Asked SQL Interview Questions at MAANG Companies๐Ÿ”ฅ๐Ÿ”ฅ

Preparing for an SQL Interview at MAANG Companies? Here are some crucial SQL Questions you should be ready to tackle:

1. How do you retrieve all columns from a table?

SELECT * FROM table_name;

2. What SQL statement is used to filter records?

SELECT * FROM table_name
WHERE condition;

The WHERE clause is used to filter records based on a specified condition.

3. How can you join multiple tables? Describe different types of JOINs.

SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;

Types of JOINs:

1. INNER JOIN: Returns records with matching values in both tables

SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;

2. LEFT JOIN: Returns all records from the left table & matched records from the right table. Unmatched records will have NULL values.

SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;

3. RIGHT JOIN: Returns all records from the right table & matched records from the left table. Unmatched records will have NULL values.

SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;

4. FULL JOIN: Returns records when there is a match in either left or right table. Unmatched records will have NULL values.

SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;

4. What is the difference between WHERE & HAVING clauses?

WHERE: Filters records before any groupings are made.

SELECT * FROM table_name
WHERE condition;

HAVING: Filters records after groupings are made.

SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;

5. How do you calculate average, sum, minimum & maximum values in a column?

Average: SELECT AVG(column_name) FROM table_name;

Sum: SELECT SUM(column_name) FROM table_name;

Minimum: SELECT MIN(column_name) FROM table_name;

Maximum: SELECT MAX(column_name) FROM table_name;

Here you can find essential SQL Interview Resources๐Ÿ‘‡
https://t.me/mysqldata

Like this post if you need more ๐Ÿ‘โค๏ธ

Hope it helps :)
โค2
Forwarded from Artificial Intelligence
๐Ÿฒ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ (๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ๐˜€๐—ฒ๐˜๐˜€!)๐Ÿ˜

๐ŸŽฏ Want to level up your SQL skills with real business scenarios?๐Ÿ“š

These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/40kF1x0

Save this post โ€” even completing 1 project can power up your SQL profile!โœ…๏ธ
โค1
What is the difference between data scientist, data engineer, data analyst and business intelligence?

๐Ÿง‘๐Ÿ”ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โ€œWhy is this happening?โ€ and โ€œWhat will happen next?โ€
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month

๐Ÿ› ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse

๐Ÿ“Š Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โ€œWhat happened?โ€ or โ€œWhatโ€™s going on right now?โ€
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region

๐Ÿ“ˆ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department

๐Ÿงฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers

๐ŸŽฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
โค2
๐Ÿ“Š Data Science Summarized: The Core Pillars of Success! ๐Ÿš€

โœ… 1๏ธโƒฃ Statistics:
The backbone of data analysis and decision-making.
Used for hypothesis testing, distributions, and drawing actionable insights.

โœ… 2๏ธโƒฃ Mathematics:
Critical for building models and understanding algorithms.
Focus on:
Linear Algebra
Calculus
Probability & Statistics

โœ… 3๏ธโƒฃ Python:
The most widely used language in data science.
Essential libraries include:
Pandas
NumPy
Scikit-Learn
TensorFlow

โœ… 4๏ธโƒฃ Machine Learning:
Use algorithms to uncover patterns and make predictions.
Key types:
Regression
Classification
Clustering

โœ… 5๏ธโƒฃ Domain Knowledge:
Context matters.
Understand your industry to build relevant, useful, and accurate models.
โค1
Greetings from PVR Cloud Tech!! ๐ŸŒˆ

We will be starting Full Stack Data Engineering on 19th July 2025, from 10:00 AM to 12:00 PM IST (Saturday).

These sessions are exclusively designed for beginners entering the software industry and individuals transitioning from non-IT to IT backgrounds. Data engineers are the backbone of modern businesses.

โœ… Course Content :

https://drive.google.com/file/d/1yejI95UAC5DdD2X83Qiu14pnfpUVX6_l/view?usp=sharing

๐Ÿ”ฅ Interested candidates, please fill out the form below and join the WhatsApp Group.

https://forms.gle/B2JD2ZUvpwfUtPZN6

https://chat.whatsapp.com/Cdr0oDSoaGZIyoIAkmlOAa

https://www.whatsapp.com/channel/0029Vb60rGU8V0thkpbFFW2n

Please share these details with your friends as these sessions may help them transform their careers, and you will be a part of it by providing information.

Thanks,
Team,PVR Cloud Tech
+91-9346060794
โค1
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ & ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Science & Analytics but donโ€™t want to spend on expensive courses?๐Ÿ‘จโ€๐Ÿ’ป

Start here โ€” with 100% FREE courses from Cisco, IBM, Google & LinkedIn, all with certificates you can showcase on LinkedIn or your resume!๐Ÿ“š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Ix2oxd

This list will set you up with real-world, job-ready skillsโœ…๏ธ
โค1
๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—™๐—”๐—”๐—ก๐—š ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜!๐Ÿ˜

If youโ€™re serious about cracking top tech interviews โ€” from FAANG to startups โ€” this is the roadmap you canโ€™t afford to miss๐ŸŽŠ

Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ€” completely free๐Ÿคฉ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3TJlpyW

Your dream job might just start here.โœ…๏ธ
โค1
Hereโ€™s a detailed breakdown of critical roles and their associated responsibilities:


๐Ÿ”˜ Data Engineer: Tailored for Data Enthusiasts

1. Data Ingestion: Acquire proficiency in data handling techniques.
2. Data Validation: Master the art of data quality assurance.
3. Data Cleansing: Learn advanced data cleaning methodologies.
4. Data Standardisation: Grasp the principles of data formatting.
5. Data Curation: Efficiently organise and manage datasets.

๐Ÿ”˜ Data Scientist: Suited for Analytical Minds

6. Feature Extraction: Hone your skills in identifying data patterns.
7. Feature Selection: Master techniques for efficient feature selection.
8. Model Exploration: Dive into the realm of model selection methodologies.

๐Ÿ”˜ Data Scientist & ML Engineer: Designed for Coding Enthusiasts

9. Coding Proficiency: Develop robust programming skills.
10. Model Training: Understand the intricacies of model training.
11. Model Validation: Explore various model validation techniques.
12. Model Evaluation: Master the art of evaluating model performance.
13. Model Refinement: Refine and improve candidate models.
14. Model Selection: Learn to choose the most suitable model for a given task.

๐Ÿ”˜ ML Engineer: Tailored for Deployment Enthusiasts

15. Model Packaging: Acquire knowledge of essential packaging techniques.
16. Model Registration: Master the process of model tracking and registration.
17. Model Containerisation: Understand the principles of containerisation.
18. Model Deployment: Explore strategies for effective model deployment.

These roles encompass diverse facets of Data and ML, catering to various interests and skill sets. Delve into these domains, identify your passions, and customise your learning journey accordingly.
โค2
๐Ÿฐ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to break into data science in 2025โ€”without spending a single rupee?๐Ÿ’ฐ๐Ÿ‘จโ€๐Ÿ’ป

Youโ€™re in luck! Microsoft is offering powerful, beginner-friendly resources that teach you everything from Python fundamentals to AI and data analyticsโ€”for free๐Ÿคฉโœ”๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vCIrb

Level up your career in the booming field of dataโœ…๏ธ
โค1
ETL vs REVERSE ETL vs ELT
โค2
Forwarded from Artificial Intelligence
๐Ÿฐ ๐— ๐˜‚๐˜€๐˜-๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐˜๐˜‚๐—ฑ๐—ฒ๐—ป๐˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

If youโ€™re starting your data analytics journey, these 4 YouTube courses are pure gold โ€” and the best part? ๐Ÿ’ป๐Ÿคฉ

Theyโ€™re completely free๐Ÿ’ฅ๐Ÿ’ฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44DvNP1

Each course can help you build the right foundation for a successful tech careerโœ…๏ธ
โค1