๐ Greetings from PVR CLOUD TECH!
๐ Course : Azure Data Engineering
Topic's:
(Azure Databricks(PySpark)+Azure DataFactory + Synapse Analytics + Microsoft Fabric)
Course content:
https://drive.google.com/file/d/1YufWV0Ru6SyYt-oNf5Mi5H8mmeV_kfP-/view
๐ Date: 7th July 2025
๐ Time: 8 PM to 9 PM IST | Monday
Duration : 3 Months
๐ฅ Click here to Register For those who are interested :
https://docs.google.com/forms/d/e/1FAIpQLSfgbxFw7w1FLSdQJBvQ8UW1C__H9erZjbnkmYQx525Zk-uvOg/viewform
๐ Also join our WhatsApp community Group :
https://chat.whatsapp.com/Cdr0oDSoaGZIyoIAkmlOAa
๐ Also follow the below WhatsApp channel
https://www.whatsapp.com/channel/0029Vb60rGU8V0thkpbFFW2n
Thanks,
PVR Cloud Tech
๐ฑ +91-9346060794
๐ Course : Azure Data Engineering
Topic's:
(Azure Databricks(PySpark)+Azure DataFactory + Synapse Analytics + Microsoft Fabric)
Course content:
https://drive.google.com/file/d/1YufWV0Ru6SyYt-oNf5Mi5H8mmeV_kfP-/view
๐ Date: 7th July 2025
๐ Time: 8 PM to 9 PM IST | Monday
Duration : 3 Months
๐ฅ Click here to Register For those who are interested :
https://docs.google.com/forms/d/e/1FAIpQLSfgbxFw7w1FLSdQJBvQ8UW1C__H9erZjbnkmYQx525Zk-uvOg/viewform
๐ Also join our WhatsApp community Group :
https://chat.whatsapp.com/Cdr0oDSoaGZIyoIAkmlOAa
๐ Also follow the below WhatsApp channel
https://www.whatsapp.com/channel/0029Vb60rGU8V0thkpbFFW2n
Thanks,
PVR Cloud Tech
๐ฑ +91-9346060794
โค2
Forwarded from Data Science & Machine Learning
๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐๐ถ๐น๐ฑ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ ๐ง๐ต๐ฎ๐ ๐๐ฒ๐๐ ๐ฌ๐ผ๐ ๐๐ถ๐ฟ๐ฒ๐ฑ?๐
If youโre just starting out in data analytics and wondering how to stand out โ real-world projects are the key๐
No recruiter is impressed by โjust theory.โ What they want to see? Actionable proof of your skills๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ezeIc9
Show recruiters that you donโt just โknowโ tools โ you use them to solve problemsโ ๏ธ
If youโre just starting out in data analytics and wondering how to stand out โ real-world projects are the key๐
No recruiter is impressed by โjust theory.โ What they want to see? Actionable proof of your skills๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ezeIc9
Show recruiters that you donโt just โknowโ tools โ you use them to solve problemsโ ๏ธ
๐ Key Skills for Aspiring Tech Specialists
๐ Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques
๐ง Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks
๐ Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools
๐ค Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus
๐ง Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning
๐คฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills
๐ NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data
๐ Embrace the world of data and AI, and become the architect of tomorrow's technology!
๐ Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques
๐ง Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks
๐ Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools
๐ค Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus
๐ง Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning
๐คฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills
๐ NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data
๐ Embrace the world of data and AI, and become the architect of tomorrow's technology!
โค1๐1
๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ โ ๐๐ถ๐ฟ๐ฒ๐ฐ๐๐น๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ผ๐ผ๐ด๐น๐ฒ?๐
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
โค1
Planning for Data Science or Data Engineering Interview.
Focus on SQL & Python first. Here are some important questions which you should know.
๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐๐ ๐ช๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ
1- Find out nth Order/Salary from the tables.
2- Find the no of output records in each join from given Table 1 & Table 2
3- YOY,MOM Growth related questions.
4- Find out Employee ,Manager Hierarchy (Self join related question) or
Employees who are earning more than managers.
5- RANK,DENSERANK related questions
6- Some row level scanning medium to complex questions using CTE or recursive CTE, like (Missing no /Missing Item from the list etc.)
7- No of matches played by every team or Source to Destination flight combination using CROSS JOIN.
8-Use window functions to perform advanced analytical tasks, such as calculating moving averages or detecting outliers.
9- Implement logic to handle hierarchical data, such as finding all descendants of a given node in a tree structure.
10-Identify and remove duplicate records from a table.
๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ช๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ
1- Reversing a String using an Extended Slicing techniques.
2- Count Vowels from Given words .
3- Find the highest occurrences of each word from string and sort them in order.
4- Remove Duplicates from List.
5-Sort a List without using Sort keyword.
6-Find the pair of numbers in this list whose sum is n no.
7-Find the max and min no in the list without using inbuilt functions.
8-Calculate the Intersection of Two Lists without using Built-in Functions
9-Write Python code to make API requests to a public API (e.g., weather API) and process the JSON response.
10-Implement a function to fetch data from a database table, perform data manipulation, and update the database.
Join for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
Focus on SQL & Python first. Here are some important questions which you should know.
๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐๐ ๐ช๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ
1- Find out nth Order/Salary from the tables.
2- Find the no of output records in each join from given Table 1 & Table 2
3- YOY,MOM Growth related questions.
4- Find out Employee ,Manager Hierarchy (Self join related question) or
Employees who are earning more than managers.
5- RANK,DENSERANK related questions
6- Some row level scanning medium to complex questions using CTE or recursive CTE, like (Missing no /Missing Item from the list etc.)
7- No of matches played by every team or Source to Destination flight combination using CROSS JOIN.
8-Use window functions to perform advanced analytical tasks, such as calculating moving averages or detecting outliers.
9- Implement logic to handle hierarchical data, such as finding all descendants of a given node in a tree structure.
10-Identify and remove duplicate records from a table.
๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ช๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ
1- Reversing a String using an Extended Slicing techniques.
2- Count Vowels from Given words .
3- Find the highest occurrences of each word from string and sort them in order.
4- Remove Duplicates from List.
5-Sort a List without using Sort keyword.
6-Find the pair of numbers in this list whose sum is n no.
7-Find the max and min no in the list without using inbuilt functions.
8-Calculate the Intersection of Two Lists without using Built-in Functions
9-Write Python code to make API requests to a public API (e.g., weather API) and process the JSON response.
10-Implement a function to fetch data from a database table, perform data manipulation, and update the database.
Join for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
โค1
๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ ๐๐ถ๐๐ต ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐โ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฃ๐ฎ๐๐ต (๐ฎ๐ฌ๐ฎ๐ฑ ๐ฅ๐ฒ๐ฎ๐ฑ๐!) ๐
Want to become a Data Engineer but donโt know where to start? ๐ก
Microsoft offers a 100% FREE official learning path that covers everything you need to break into the field โ from data pipelines to big data and cloud integrations.๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nEONDU
ENJOY LEARNING โ ๏ธ
Want to become a Data Engineer but donโt know where to start? ๐ก
Microsoft offers a 100% FREE official learning path that covers everything you need to break into the field โ from data pipelines to big data and cloud integrations.๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nEONDU
ENJOY LEARNING โ ๏ธ
โค1
๐จ๐ฝ๐๐ธ๐ถ๐น๐น ๐๐ฎ๐๐: ๐๐ฒ๐ฎ๐ฟ๐ป ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ถ๐๐ต ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐-๐๐ฎ๐๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ถ๐ป ๐๐๐๐ ๐ฏ๐ฌ ๐๐ฎ๐๐!๐
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
โค1
Python Detailed Roadmap ๐
๐ 1. Basics
โผ Data Types & Variables
โผ Operators & Expressions
โผ Control Flow (if, loops)
๐ 2. Functions & Modules
โผ Defining Functions
โผ Lambda Functions
โผ Importing & Creating Modules
๐ 3. File Handling
โผ Reading & Writing Files
โผ Working with CSV & JSON
๐ 4. Object-Oriented Programming (OOP)
โผ Classes & Objects
โผ Inheritance & Polymorphism
โผ Encapsulation
๐ 5. Exception Handling
โผ Try-Except Blocks
โผ Custom Exceptions
๐ 6. Advanced Python Concepts
โผ List & Dictionary Comprehensions
โผ Generators & Iterators
โผ Decorators
๐ 7. Essential Libraries
โผ NumPy (Arrays & Computations)
โผ Pandas (Data Analysis)
โผ Matplotlib & Seaborn (Visualization)
๐ 8. Web Development & APIs
โผ Web Scraping (BeautifulSoup, Scrapy)
โผ API Integration (Requests)
โผ Flask & Django (Backend Development)
๐ 9. Automation & Scripting
โผ Automating Tasks with Python
โผ Working with Selenium & PyAutoGUI
๐ 10. Data Science & Machine Learning
โผ Data Cleaning & Preprocessing
โผ Scikit-Learn (ML Algorithms)
โผ TensorFlow & PyTorch (Deep Learning)
๐ 11. Projects
โผ Build Real-World Applications
โผ Showcase on GitHub
๐ 12. โ Apply for Jobs
โผ Strengthen Resume & Portfolio
โผ Prepare for Technical Interviews
Like for more โค๏ธ๐ช
๐ 1. Basics
โผ Data Types & Variables
โผ Operators & Expressions
โผ Control Flow (if, loops)
๐ 2. Functions & Modules
โผ Defining Functions
โผ Lambda Functions
โผ Importing & Creating Modules
๐ 3. File Handling
โผ Reading & Writing Files
โผ Working with CSV & JSON
๐ 4. Object-Oriented Programming (OOP)
โผ Classes & Objects
โผ Inheritance & Polymorphism
โผ Encapsulation
๐ 5. Exception Handling
โผ Try-Except Blocks
โผ Custom Exceptions
๐ 6. Advanced Python Concepts
โผ List & Dictionary Comprehensions
โผ Generators & Iterators
โผ Decorators
๐ 7. Essential Libraries
โผ NumPy (Arrays & Computations)
โผ Pandas (Data Analysis)
โผ Matplotlib & Seaborn (Visualization)
๐ 8. Web Development & APIs
โผ Web Scraping (BeautifulSoup, Scrapy)
โผ API Integration (Requests)
โผ Flask & Django (Backend Development)
๐ 9. Automation & Scripting
โผ Automating Tasks with Python
โผ Working with Selenium & PyAutoGUI
๐ 10. Data Science & Machine Learning
โผ Data Cleaning & Preprocessing
โผ Scikit-Learn (ML Algorithms)
โผ TensorFlow & PyTorch (Deep Learning)
๐ 11. Projects
โผ Build Real-World Applications
โผ Showcase on GitHub
๐ 12. โ Apply for Jobs
โผ Strengthen Resume & Portfolio
โผ Prepare for Technical Interviews
Like for more โค๏ธ๐ช
โค4
Forwarded from Python Projects & Resources
๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐โ๐ ๐๐ฅ๐๐ ๐๐ ๐๐ด๐ฒ๐ป๐๐ ๐๐ผ๐๐ฟ๐๐ฒ โ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ ๐๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐ ๐ช๐ผ๐ฟ๐ธ๐๐
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
โค2
Top 10 Python functions that are commonly used in data analysis
import pandas as pd: This function is used to import the Pandas library, which is essential for data manipulation and analysis.
read_csv(): This function from Pandas is used to read data from CSV files into a DataFrame, a primary data structure for data analysis.
head(): It allows you to quickly preview the first few rows of a DataFrame to understand its structure.
describe(): This function provides summary statistics of the numeric columns in a DataFrame, such as mean, standard deviation, and percentiles.
groupby(): It's used to group data by one or more columns, enabling aggregation and analysis within those groups.
pivot_table(): This function helps in creating pivot tables, allowing you to summarize and reshape data for analysis.
fillna(): Useful for filling missing values in a DataFrame with a specified value or a calculated one (e.g., mean or median).
apply(): This function is used to apply custom functions to DataFrame columns or rows, which is handy for data transformation.
plot(): It's part of the Matplotlib library and is used for creating various data visualizations, such as line plots, bar charts, and scatter plots.
merge(): This function is used for combining two or more DataFrames based on a common column or index, which is crucial for joining datasets during analysis.
These functions are essential tools for any data analyst working with Python for data analysis tasks.
Hope it helps :)
import pandas as pd: This function is used to import the Pandas library, which is essential for data manipulation and analysis.
read_csv(): This function from Pandas is used to read data from CSV files into a DataFrame, a primary data structure for data analysis.
head(): It allows you to quickly preview the first few rows of a DataFrame to understand its structure.
describe(): This function provides summary statistics of the numeric columns in a DataFrame, such as mean, standard deviation, and percentiles.
groupby(): It's used to group data by one or more columns, enabling aggregation and analysis within those groups.
pivot_table(): This function helps in creating pivot tables, allowing you to summarize and reshape data for analysis.
fillna(): Useful for filling missing values in a DataFrame with a specified value or a calculated one (e.g., mean or median).
apply(): This function is used to apply custom functions to DataFrame columns or rows, which is handy for data transformation.
plot(): It's part of the Matplotlib library and is used for creating various data visualizations, such as line plots, bar charts, and scatter plots.
merge(): This function is used for combining two or more DataFrames based on a common column or index, which is crucial for joining datasets during analysis.
These functions are essential tools for any data analyst working with Python for data analysis tasks.
Hope it helps :)
โค3
Forwarded from Artificial Intelligence
๐ช๐ถ๐ฝ๐ฟ๐ผโ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฐ๐ฐ๐ฒ๐น๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ: ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐-๐ง๐ฟ๐ฎ๐ฐ๐ธ ๐๐ผ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ!๐
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
โค1
Essential Data Science Concepts Everyone Should Know:
1. Data Types and Structures:
โข Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)
โข Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)
โข Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)
2. Descriptive Statistics:
โข Measures of Central Tendency: Mean, Median, Mode (describing the typical value)
โข Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)
โข Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)
3. Probability and Statistics:
โข Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)
โข Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)
โข Confidence Intervals: Estimating the range of plausible values for a population parameter
4. Machine Learning:
โข Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)
โข Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)
โข Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)
5. Data Cleaning and Preprocessing:
โข Missing Value Handling: Imputation, Deletion (dealing with incomplete data)
โข Outlier Detection and Removal: Identifying and addressing extreme values
โข Feature Engineering: Creating new features from existing ones (e.g., combining variables)
6. Data Visualization:
โข Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)
โข Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)
7. Ethical Considerations in Data Science:
โข Data Privacy and Security: Protecting sensitive information
โข Bias and Fairness: Ensuring algorithms are unbiased and fair
8. Programming Languages and Tools:
โข Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn
โข R: Statistical programming language with strong visualization capabilities
โข SQL: For querying and manipulating data in databases
9. Big Data and Cloud Computing:
โข Hadoop and Spark: Frameworks for processing massive datasets
โข Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)
10. Domain Expertise:
โข Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis
โข Problem Framing: Defining the right questions and objectives for data-driven decision making
Bonus:
โข Data Storytelling: Communicating insights and findings in a clear and engaging manner
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
1. Data Types and Structures:
โข Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)
โข Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)
โข Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)
2. Descriptive Statistics:
โข Measures of Central Tendency: Mean, Median, Mode (describing the typical value)
โข Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)
โข Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)
3. Probability and Statistics:
โข Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)
โข Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)
โข Confidence Intervals: Estimating the range of plausible values for a population parameter
4. Machine Learning:
โข Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)
โข Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)
โข Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)
5. Data Cleaning and Preprocessing:
โข Missing Value Handling: Imputation, Deletion (dealing with incomplete data)
โข Outlier Detection and Removal: Identifying and addressing extreme values
โข Feature Engineering: Creating new features from existing ones (e.g., combining variables)
6. Data Visualization:
โข Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)
โข Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)
7. Ethical Considerations in Data Science:
โข Data Privacy and Security: Protecting sensitive information
โข Bias and Fairness: Ensuring algorithms are unbiased and fair
8. Programming Languages and Tools:
โข Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn
โข R: Statistical programming language with strong visualization capabilities
โข SQL: For querying and manipulating data in databases
9. Big Data and Cloud Computing:
โข Hadoop and Spark: Frameworks for processing massive datasets
โข Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)
10. Domain Expertise:
โข Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis
โข Problem Framing: Defining the right questions and objectives for data-driven decision making
Bonus:
โข Data Storytelling: Communicating insights and findings in a clear and engaging manner
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
โค1
๐๐ถ๐ฑ๐ฑ๐ฒ๐ป ๐๐ฒ๐บ ๐ณ๐ผ๐ฟ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ฟ๐ผ๐บ ๐ ๐๐ง, ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ!๐
Still searching for quality learning resources?๐
What if I told you thereโs a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard โ and most people have never even heard of it? ๐คฏ
๐๐ถ๐ป๐ธ๐:-๐
https://pdlink.in/4lN7aF1
Donโt skip this chanceโ ๏ธ
Still searching for quality learning resources?๐
What if I told you thereโs a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard โ and most people have never even heard of it? ๐คฏ
๐๐ถ๐ป๐ธ๐:-๐
https://pdlink.in/4lN7aF1
Donโt skip this chanceโ ๏ธ
Forwarded from Python Projects & Resources
๐ฏ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
Want to break into Data Analytics but donโt know where to start? ๐ค
These 3 beginner-friendly and 100% FREE courses will help you build real skills โ no degree required!๐จโ๐
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/3IohnJO
No confusion, no fluff โ just pure valueโ ๏ธ
Want to break into Data Analytics but donโt know where to start? ๐ค
These 3 beginner-friendly and 100% FREE courses will help you build real skills โ no degree required!๐จโ๐
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/3IohnJO
No confusion, no fluff โ just pure valueโ ๏ธ
Most Asked SQL Interview Questions at MAANG Companies๐ฅ๐ฅ
Preparing for an SQL Interview at MAANG Companies? Here are some crucial SQL Questions you should be ready to tackle:
1. How do you retrieve all columns from a table?
SELECT * FROM table_name;
2. What SQL statement is used to filter records?
SELECT * FROM table_name
WHERE condition;
The WHERE clause is used to filter records based on a specified condition.
3. How can you join multiple tables? Describe different types of JOINs.
SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;
Types of JOINs:
1. INNER JOIN: Returns records with matching values in both tables
SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;
2. LEFT JOIN: Returns all records from the left table & matched records from the right table. Unmatched records will have NULL values.
SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;
3. RIGHT JOIN: Returns all records from the right table & matched records from the left table. Unmatched records will have NULL values.
SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;
4. FULL JOIN: Returns records when there is a match in either left or right table. Unmatched records will have NULL values.
SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;
4. What is the difference between WHERE & HAVING clauses?
WHERE: Filters records before any groupings are made.
SELECT * FROM table_name
WHERE condition;
HAVING: Filters records after groupings are made.
SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;
5. How do you calculate average, sum, minimum & maximum values in a column?
Average: SELECT AVG(column_name) FROM table_name;
Sum: SELECT SUM(column_name) FROM table_name;
Minimum: SELECT MIN(column_name) FROM table_name;
Maximum: SELECT MAX(column_name) FROM table_name;
Here you can find essential SQL Interview Resources๐
https://t.me/mysqldata
Like this post if you need more ๐โค๏ธ
Hope it helps :)
Preparing for an SQL Interview at MAANG Companies? Here are some crucial SQL Questions you should be ready to tackle:
1. How do you retrieve all columns from a table?
SELECT * FROM table_name;
2. What SQL statement is used to filter records?
SELECT * FROM table_name
WHERE condition;
The WHERE clause is used to filter records based on a specified condition.
3. How can you join multiple tables? Describe different types of JOINs.
SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;
Types of JOINs:
1. INNER JOIN: Returns records with matching values in both tables
SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;
2. LEFT JOIN: Returns all records from the left table & matched records from the right table. Unmatched records will have NULL values.
SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;
3. RIGHT JOIN: Returns all records from the right table & matched records from the left table. Unmatched records will have NULL values.
SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;
4. FULL JOIN: Returns records when there is a match in either left or right table. Unmatched records will have NULL values.
SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;
4. What is the difference between WHERE & HAVING clauses?
WHERE: Filters records before any groupings are made.
SELECT * FROM table_name
WHERE condition;
HAVING: Filters records after groupings are made.
SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;
5. How do you calculate average, sum, minimum & maximum values in a column?
Average: SELECT AVG(column_name) FROM table_name;
Sum: SELECT SUM(column_name) FROM table_name;
Minimum: SELECT MIN(column_name) FROM table_name;
Maximum: SELECT MAX(column_name) FROM table_name;
Here you can find essential SQL Interview Resources๐
https://t.me/mysqldata
Like this post if you need more ๐โค๏ธ
Hope it helps :)
โค2
Forwarded from Artificial Intelligence
๐ฒ ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ (๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ๐๐ฒ๐๐!)๐
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
โค1
What is the difference between data scientist, data engineer, data analyst and business intelligence?
๐ง๐ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โWhy is this happening?โ and โWhat will happen next?โ
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month
๐ ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse
๐ Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โWhat happened?โ or โWhatโs going on right now?โ
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region
๐ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department
๐งฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers
๐ฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
๐ง๐ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โWhy is this happening?โ and โWhat will happen next?โ
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month
๐ ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse
๐ Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โWhat happened?โ or โWhatโs going on right now?โ
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region
๐ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department
๐งฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers
๐ฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
โค2