1. How to change a table name in SQL?
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.
2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like ‘Steven’;
With this command, we will be able to extract all the records where the first name is like “Steven”.
3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.
4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.
2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like ‘Steven’;
With this command, we will be able to extract all the records where the first name is like “Steven”.
3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.
4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY
👍2
𝟯 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗔𝘇𝘂𝗿𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝗮𝘁𝗵𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴😍
📊 Ready to Dive Into the World of Data Engineering and Analytics?📌
If you’re planning to enter the field of data engineering or want to level up your cloud-based analytics skills, Microsoft Azure has just what you need — for free!👨🎓🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3ZoW2Fy
Enjoy Learning ✅️
📊 Ready to Dive Into the World of Data Engineering and Analytics?📌
If you’re planning to enter the field of data engineering or want to level up your cloud-based analytics skills, Microsoft Azure has just what you need — for free!👨🎓🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3ZoW2Fy
Enjoy Learning ✅️
𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗝𝗼𝘂𝗿𝗻𝗲𝘆 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Ready to upskill in data science for free?🚀
Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43GspSO
Take the first step towards your dream career!✅️
Ready to upskill in data science for free?🚀
Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43GspSO
Take the first step towards your dream career!✅️
Beyond Data Analytics: Expanding Your Career Horizons
Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:
1️⃣ Data Science & AI Specialist 🤖
Dive deeper into machine learning, deep learning, and AI-powered analytics.
Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.
Work on predictive modeling, NLP, and AI automation.
2️⃣ Data Engineering 🏗️
Shift towards building scalable data infrastructure.
Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.
Learn Docker, Kubernetes, and Airflow for workflow automation.
3️⃣ Business Intelligence & Data Strategy 📊
Transition into high-level decision-making roles.
Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.
Lead data-driven transformation projects in organizations.
4️⃣ Product Analytics & Growth Strategy 📈
Work closely with product managers to optimize user experience and engagement.
Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.
Learn Mixpanel, Amplitude, and Google Analytics.
5️⃣ Data Governance & Privacy Expert 🔐
Specialize in data compliance, security, and ethical AI.
Learn about GDPR, CCPA, and industry regulations.
Work on data quality, lineage, and metadata management.
6️⃣ AI-Powered Automation & No-Code Analytics 🚀
Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.
Automate repetitive tasks and create self-service analytics solutions for businesses.
7️⃣ Freelancing & Consulting 💼
Offer data analytics services as an independent consultant.
Build a personal brand through LinkedIn, Medium, or YouTube.
Monetize your expertise via online courses, coaching, or workshops.
8️⃣ Transitioning to Leadership Roles
Become a Data Science Manager, Head of Analytics, or Chief Data Officer.
Focus on mentoring teams, driving data strategy, and influencing business decisions.
Develop stakeholder management, communication, and leadership skills.
Mastering data analytics opens up multiple career pathways—whether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! 🚀
#dataanalytics
Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:
1️⃣ Data Science & AI Specialist 🤖
Dive deeper into machine learning, deep learning, and AI-powered analytics.
Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.
Work on predictive modeling, NLP, and AI automation.
2️⃣ Data Engineering 🏗️
Shift towards building scalable data infrastructure.
Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.
Learn Docker, Kubernetes, and Airflow for workflow automation.
3️⃣ Business Intelligence & Data Strategy 📊
Transition into high-level decision-making roles.
Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.
Lead data-driven transformation projects in organizations.
4️⃣ Product Analytics & Growth Strategy 📈
Work closely with product managers to optimize user experience and engagement.
Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.
Learn Mixpanel, Amplitude, and Google Analytics.
5️⃣ Data Governance & Privacy Expert 🔐
Specialize in data compliance, security, and ethical AI.
Learn about GDPR, CCPA, and industry regulations.
Work on data quality, lineage, and metadata management.
6️⃣ AI-Powered Automation & No-Code Analytics 🚀
Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.
Automate repetitive tasks and create self-service analytics solutions for businesses.
7️⃣ Freelancing & Consulting 💼
Offer data analytics services as an independent consultant.
Build a personal brand through LinkedIn, Medium, or YouTube.
Monetize your expertise via online courses, coaching, or workshops.
8️⃣ Transitioning to Leadership Roles
Become a Data Science Manager, Head of Analytics, or Chief Data Officer.
Focus on mentoring teams, driving data strategy, and influencing business decisions.
Develop stakeholder management, communication, and leadership skills.
Mastering data analytics opens up multiple career pathways—whether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! 🚀
#dataanalytics
👍1
𝟯 𝗙𝗿𝗲𝗲 𝗢𝗿𝗮𝗰𝗹𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗙𝘂𝘁𝘂𝗿𝗲-𝗣𝗿𝗼𝗼𝗳 𝗬𝗼𝘂𝗿 𝗧𝗲𝗰𝗵 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Oracle, one of the world’s most trusted tech giants, offers free training and globally recognized certifications to help you build expertise in cloud computing, Java, and enterprise applications.👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3GZZUXi
All at zero cost!🎊✅️
Oracle, one of the world’s most trusted tech giants, offers free training and globally recognized certifications to help you build expertise in cloud computing, Java, and enterprise applications.👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3GZZUXi
All at zero cost!🎊✅️
🔥1
🔍 Mastering Spark: 20 Interview Questions Demystified!
1️⃣ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2️⃣ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3️⃣ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4️⃣ RDD Operations: Explore the various RDD operations that power Spark.
5️⃣ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6️⃣ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7️⃣ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8️⃣ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9️⃣ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
🔟 spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1️⃣1️⃣ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1️⃣2️⃣ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1️⃣3️⃣ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1️⃣4️⃣ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1️⃣5️⃣ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1️⃣6️⃣ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1️⃣7️⃣ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1️⃣8️⃣ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1️⃣9️⃣ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2️⃣0️⃣ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1️⃣ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2️⃣ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3️⃣ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4️⃣ RDD Operations: Explore the various RDD operations that power Spark.
5️⃣ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6️⃣ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7️⃣ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8️⃣ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9️⃣ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
🔟 spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1️⃣1️⃣ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1️⃣2️⃣ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1️⃣3️⃣ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1️⃣4️⃣ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1️⃣5️⃣ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1️⃣6️⃣ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1️⃣7️⃣ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1️⃣8️⃣ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1️⃣9️⃣ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2️⃣0️⃣ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
👍1
Forwarded from Artificial Intelligence
𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀 𝗳𝗼𝗿 𝗧𝗲𝗰𝗵 & 𝗗𝗮𝘁𝗮 𝗥𝗼𝗹𝗲𝘀 – 𝗙𝗿𝗲𝗲 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗚𝘂𝗶𝗱𝗲😍
If you’re aiming for a role in tech, data analytics, or software development, one of the most valuable skills you can master is Python🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jg88I8
All The Best 🎊
If you’re aiming for a role in tech, data analytics, or software development, one of the most valuable skills you can master is Python🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jg88I8
All The Best 🎊
👍1
WhatsApp is no longer a platform just for chat.
It's an educational goldmine.
If you do, you’re sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
👇👇
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
👇👇
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
👇👇
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
👇👇
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
👇👇
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
👇👇
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
👇👇
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
👇👇
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Coding Projects
👇👇
https://whatsapp.com/channel/0029VamhFMt7j6fx4bYsX908
Excel for Data Analyst
👇👇
https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
ENJOY LEARNING 👍👍
It's an educational goldmine.
If you do, you’re sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
👇👇
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
👇👇
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
👇👇
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
👇👇
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
👇👇
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
👇👇
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
👇👇
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
👇👇
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Coding Projects
👇👇
https://whatsapp.com/channel/0029VamhFMt7j6fx4bYsX908
Excel for Data Analyst
👇👇
https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
ENJOY LEARNING 👍👍
👍2
Forwarded from Python Projects & Resources
𝟯 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿-𝗙𝗿𝗶𝗲𝗻𝗱𝗹𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗬𝗼𝘂𝗿 𝗣𝗼𝗿𝘁𝗳𝗼𝗹𝗶𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍
👩💻 Want to Break into Data Science but Don’t Know Where to Start?🚀
The best way to begin your data science journey is with hands-on projects using real-world datasets.👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/44LoViW
Enjoy Learning ✅️
👩💻 Want to Break into Data Science but Don’t Know Where to Start?🚀
The best way to begin your data science journey is with hands-on projects using real-world datasets.👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/44LoViW
Enjoy Learning ✅️
Forwarded from Python Projects & Resources
𝗚𝗼𝗼𝗴𝗹𝗲 𝗧𝗼𝗽 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
If you’re job hunting, switching careers, or just want to upgrade your skill set — Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics📊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified 🎓️
If you’re job hunting, switching careers, or just want to upgrade your skill set — Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics📊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified 🎓️
👍1
𝟳 𝗕𝗲𝘀𝘁 𝗪𝗲𝗯𝘀𝗶𝘁𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 𝗶𝗻 𝟮𝟬𝟮𝟱 (𝗡𝗼 𝗖𝗼𝘀𝘁, 𝗡𝗼 𝗖𝗮𝘁𝗰𝗵!)😍
Want to become a Data Scientist in 2025 without spending a single rupee? You’re in the right place📌
From Python and machine learning to hands-on projects and challenges🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4dAuymr
Enjoy Learning ✅️
Want to become a Data Scientist in 2025 without spending a single rupee? You’re in the right place📌
From Python and machine learning to hands-on projects and challenges🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4dAuymr
Enjoy Learning ✅️
❤1
SNOWFLAKES AND DATABRICKS
Snowflake and Databricks are leading cloud data platforms, but how do you choose the right one for your needs?
🌐 𝐒𝐧𝐨𝐰𝐟𝐥𝐚𝐤𝐞
❄️ 𝐍𝐚𝐭𝐮𝐫𝐞: Snowflake operates as a cloud-native data warehouse-as-a-service, streamlining data storage and management without the need for complex infrastructure setup.
❄️ 𝐒𝐭𝐫𝐞𝐧𝐠𝐭𝐡𝐬: It provides robust ELT (Extract, Load, Transform) capabilities primarily through its COPY command, enabling efficient data loading.
❄️ Snowflake offers dedicated schema and file object definitions, enhancing data organization and accessibility.
❄️ 𝐅𝐥𝐞𝐱𝐢𝐛𝐢𝐥𝐢𝐭𝐲: One of its standout features is the ability to create multiple independent compute clusters that can operate on a single data copy. This flexibility allows for enhanced resource allocation based on varying workloads.
❄️ 𝐃𝐚𝐭𝐚 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠: While Snowflake primarily adopts an ELT approach, it seamlessly integrates with popular third-party ETL tools such as Fivetran, Talend, and supports DBT installation. This integration makes it a versatile choice for organizations looking to leverage existing tools.
🌐 𝐃𝐚𝐭𝐚𝐛𝐫𝐢𝐜𝐤𝐬
❄️ 𝐂𝐨𝐫𝐞: Databricks is fundamentally built around processing power, with native support for Apache Spark, making it an exceptional platform for ETL tasks. This integration allows users to perform complex data transformations efficiently.
❄️ 𝐒𝐭𝐨𝐫𝐚𝐠𝐞: It utilizes a 'data lakehouse' architecture, which combines the features of a data lake with the ability to run SQL queries. This model is gaining traction as organizations seek to leverage both structured and unstructured data in a unified framework.
🌐 𝐊𝐞𝐲 𝐓𝐚𝐤𝐞𝐚𝐰𝐚𝐲𝐬
❄️ 𝐃𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐍𝐞𝐞𝐝𝐬: Both Snowflake and Databricks excel in their respective areas, addressing different data management requirements.
❄️ 𝐒𝐧𝐨𝐰𝐟𝐥𝐚𝐤𝐞’𝐬 𝐈𝐝𝐞𝐚𝐥 𝐔𝐬𝐞 𝐂𝐚𝐬𝐞: If you are equipped with established ETL tools like Fivetran, Talend, or Tibco, Snowflake could be the perfect choice. It efficiently manages the complexities of database infrastructure, including partitioning, scalability, and indexing.
❄️ 𝐃𝐚𝐭𝐚𝐛𝐫𝐢𝐜𝐤𝐬 𝐟𝐨𝐫 𝐂𝐨𝐦𝐩𝐥𝐞𝐱 𝐋𝐚𝐧𝐝𝐬𝐜𝐚𝐩𝐞𝐬: Conversely, if your organization deals with a complex data landscape characterized by unpredictable sources and schemas, Databricks—with its schema-on-read technique—may be more advantageous.
🌐 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧:
Ultimately, the decision between Snowflake and Databricks should align with your specific data needs and organizational goals. Both platforms have established their niches, and understanding their strengths will guide you in selecting the right tool for your data strategy.
Snowflake and Databricks are leading cloud data platforms, but how do you choose the right one for your needs?
🌐 𝐒𝐧𝐨𝐰𝐟𝐥𝐚𝐤𝐞
❄️ 𝐍𝐚𝐭𝐮𝐫𝐞: Snowflake operates as a cloud-native data warehouse-as-a-service, streamlining data storage and management without the need for complex infrastructure setup.
❄️ 𝐒𝐭𝐫𝐞𝐧𝐠𝐭𝐡𝐬: It provides robust ELT (Extract, Load, Transform) capabilities primarily through its COPY command, enabling efficient data loading.
❄️ Snowflake offers dedicated schema and file object definitions, enhancing data organization and accessibility.
❄️ 𝐅𝐥𝐞𝐱𝐢𝐛𝐢𝐥𝐢𝐭𝐲: One of its standout features is the ability to create multiple independent compute clusters that can operate on a single data copy. This flexibility allows for enhanced resource allocation based on varying workloads.
❄️ 𝐃𝐚𝐭𝐚 𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠: While Snowflake primarily adopts an ELT approach, it seamlessly integrates with popular third-party ETL tools such as Fivetran, Talend, and supports DBT installation. This integration makes it a versatile choice for organizations looking to leverage existing tools.
🌐 𝐃𝐚𝐭𝐚𝐛𝐫𝐢𝐜𝐤𝐬
❄️ 𝐂𝐨𝐫𝐞: Databricks is fundamentally built around processing power, with native support for Apache Spark, making it an exceptional platform for ETL tasks. This integration allows users to perform complex data transformations efficiently.
❄️ 𝐒𝐭𝐨𝐫𝐚𝐠𝐞: It utilizes a 'data lakehouse' architecture, which combines the features of a data lake with the ability to run SQL queries. This model is gaining traction as organizations seek to leverage both structured and unstructured data in a unified framework.
🌐 𝐊𝐞𝐲 𝐓𝐚𝐤𝐞𝐚𝐰𝐚𝐲𝐬
❄️ 𝐃𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐍𝐞𝐞𝐝𝐬: Both Snowflake and Databricks excel in their respective areas, addressing different data management requirements.
❄️ 𝐒𝐧𝐨𝐰𝐟𝐥𝐚𝐤𝐞’𝐬 𝐈𝐝𝐞𝐚𝐥 𝐔𝐬𝐞 𝐂𝐚𝐬𝐞: If you are equipped with established ETL tools like Fivetran, Talend, or Tibco, Snowflake could be the perfect choice. It efficiently manages the complexities of database infrastructure, including partitioning, scalability, and indexing.
❄️ 𝐃𝐚𝐭𝐚𝐛𝐫𝐢𝐜𝐤𝐬 𝐟𝐨𝐫 𝐂𝐨𝐦𝐩𝐥𝐞𝐱 𝐋𝐚𝐧𝐝𝐬𝐜𝐚𝐩𝐞𝐬: Conversely, if your organization deals with a complex data landscape characterized by unpredictable sources and schemas, Databricks—with its schema-on-read technique—may be more advantageous.
🌐 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧:
Ultimately, the decision between Snowflake and Databricks should align with your specific data needs and organizational goals. Both platforms have established their niches, and understanding their strengths will guide you in selecting the right tool for your data strategy.
❤2
Forwarded from Python Projects & Resources
𝗕𝗿𝗲𝗮𝗸 𝗜𝗻𝘁𝗼 𝗗𝗲𝗲𝗽 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗶𝗻 𝟮𝟬𝟮𝟱 𝘄𝗶𝘁𝗵 𝗧𝗵𝗶𝘀 𝗙𝗥𝗘𝗘 𝗠𝗜𝗧 𝗖𝗼𝘂𝗿𝘀𝗲😍
If you’re serious about AI, you can’t skip Deep Learning—and this FREE course from MIT is one of the best ways to start👨💻📌
Offered by MIT’s top researchers and engineers, this online course is open to everyone, no matter where you live or work🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3H6cggR
Why wait to get started when you can learn from MIT for free?✅️
If you’re serious about AI, you can’t skip Deep Learning—and this FREE course from MIT is one of the best ways to start👨💻📌
Offered by MIT’s top researchers and engineers, this online course is open to everyone, no matter where you live or work🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3H6cggR
Why wait to get started when you can learn from MIT for free?✅️
👍1
Here are some commonly asked SQL interview questions along with brief answers:
1. What is SQL?
- SQL stands for Structured Query Language, used for managing and manipulating relational databases.
2. What are the types of SQL commands?
- SQL commands can be broadly categorized into four types: Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), and Transaction Control Language (TCL).
3. What is the difference between CHAR and VARCHAR data types?
- CHAR is a fixed-length character data type, while VARCHAR is a variable-length character data type. CHAR will always occupy the same amount of storage space, while VARCHAR will only use the necessary space to store the actual data.
4. What is a primary key?
- A primary key is a column or a set of columns that uniquely identifies each row in a table. It ensures data integrity by enforcing uniqueness and can be used to establish relationships between tables.
5. What is a foreign key?
- A foreign key is a column or a set of columns in one table that refers to the primary key in another table. It establishes a relationship between two tables and ensures referential integrity.
6. What is a JOIN in SQL?
- JOIN is used to combine rows from two or more tables based on a related column between them. There are different types of JOINs, including INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.
7. What is the difference between INNER JOIN and OUTER JOIN?
- INNER JOIN returns only the rows that have matching values in both tables, while OUTER JOIN (LEFT, RIGHT, FULL) returns all rows from one or both tables, with NULL values in columns where there is no match.
8. What is the difference between GROUP BY and ORDER BY?
- GROUP BY is used to group rows that have the same values into summary rows, typically used with aggregate functions like SUM, COUNT, AVG, etc., while ORDER BY is used to sort the result set based on one or more columns.
9. What is a subquery?
- A subquery is a query nested within another query, used to return data that will be used in the main query. Subqueries can be used in SELECT, INSERT, UPDATE, and DELETE statements.
10. What is normalization in SQL?
- Normalization is the process of organizing data in a database to reduce redundancy and dependency. It involves dividing large tables into smaller tables and defining relationships between them to improve data integrity and efficiency.
Around 90% questions will be asked from sql in data analytics interview, so please make sure to practice SQL skills using websites like stratascratch. ☺️💪
1. What is SQL?
- SQL stands for Structured Query Language, used for managing and manipulating relational databases.
2. What are the types of SQL commands?
- SQL commands can be broadly categorized into four types: Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), and Transaction Control Language (TCL).
3. What is the difference between CHAR and VARCHAR data types?
- CHAR is a fixed-length character data type, while VARCHAR is a variable-length character data type. CHAR will always occupy the same amount of storage space, while VARCHAR will only use the necessary space to store the actual data.
4. What is a primary key?
- A primary key is a column or a set of columns that uniquely identifies each row in a table. It ensures data integrity by enforcing uniqueness and can be used to establish relationships between tables.
5. What is a foreign key?
- A foreign key is a column or a set of columns in one table that refers to the primary key in another table. It establishes a relationship between two tables and ensures referential integrity.
6. What is a JOIN in SQL?
- JOIN is used to combine rows from two or more tables based on a related column between them. There are different types of JOINs, including INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.
7. What is the difference between INNER JOIN and OUTER JOIN?
- INNER JOIN returns only the rows that have matching values in both tables, while OUTER JOIN (LEFT, RIGHT, FULL) returns all rows from one or both tables, with NULL values in columns where there is no match.
8. What is the difference between GROUP BY and ORDER BY?
- GROUP BY is used to group rows that have the same values into summary rows, typically used with aggregate functions like SUM, COUNT, AVG, etc., while ORDER BY is used to sort the result set based on one or more columns.
9. What is a subquery?
- A subquery is a query nested within another query, used to return data that will be used in the main query. Subqueries can be used in SELECT, INSERT, UPDATE, and DELETE statements.
10. What is normalization in SQL?
- Normalization is the process of organizing data in a database to reduce redundancy and dependency. It involves dividing large tables into smaller tables and defining relationships between them to improve data integrity and efficiency.
Around 90% questions will be asked from sql in data analytics interview, so please make sure to practice SQL skills using websites like stratascratch. ☺️💪
❤3👍1
Forwarded from Artificial Intelligence
𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟱 😍
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified 🎓
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified 🎓
Netflix Analytics Engineer Interview Experience:
SQL Questions:
1️⃣ SQL Question 1: Identify VIP Users for Netflix
Question: To better cater to its most dedicated users, Netflix would like to identify its “VIP users” - those who are most active in terms of the number of hours of content they watch. Write a SQL query that will retrieve the top 10 users with the most watched hours in the last month.
Tables:
• users table: user_id (integer), sign_up_date (date), subscription_type (text)
• watching_activity table: activity_id (integer), user_id (integer), date_time (timestamp), show_id (integer), hours_watched (float)
2️⃣ SQL Question 2: Analyzing Ratings For Netflix Shows
Question: Given a table of user ratings for Netflix shows, calculate the average rating for each show within a given month. Assume that there is a column for user_id, show_id, rating (out of 5 stars), and date of review. Order the results by month and then by average rating (descending order).
Tables:
• show_reviews table: review_id (integer), user_id (integer), review_date (timestamp), show_id (integer), stars (integer)
3️⃣ SQL Question 3: What does EXCEPT / MINUS SQL commands do?
Question: Explain the purpose and usage of the EXCEPT (or MINUS in some SQL dialects) SQL commands.
4️⃣ SQL Question 4: Filter Netflix Users Based on Viewing History and Subscription Status
Question: You are given a database of Netflix’s user viewing history and their current subscription status. Write a SQL query to find all active customers who watched more than 10 episodes of a show called “Stranger Things” in the last 30 days.
Tables:
• users table: user_id (integer), active (boolean)
• viewing_history table: user_id (integer), show_id (integer), episode_id (integer), watch_date (date)
• shows table: show_id (integer), show_name (text)
5️⃣ SQL Question 5: What does it mean to denormalize a database?
Question: Explain the concept and implications of denormalizing a database.
6️⃣ SQL Question 6: Filter and Match Customer’s Viewing Records
Question: As a data analyst at Netflix, you are asked to analyze the customer’s viewing records. You confirmed that Netflix is especially interested in customers who have been continuously watching a particular genre - ‘Documentary’ over the last month. The task is to find the name and email of those customers who have viewed more than five ‘Documentary’ movies within the last month. ‘Documentary’ could be a part of a broader genre category in the genre field (for example, ‘Documentary, History’). Therefore, the matching pattern could occur anywhere within the string.
Tables:
• movies table: movie_id (integer), title (text), genre (text), release_year (integer)
• customer table: user_id (integer), name (text), email (text), last_movie_watched (integer), date_watched (date)
Here you can find essential SQL Interview Resources👇
https://t.me/mysqldata
Like this post if you need more 👍❤️
Hope it helps :)
SQL Questions:
1️⃣ SQL Question 1: Identify VIP Users for Netflix
Question: To better cater to its most dedicated users, Netflix would like to identify its “VIP users” - those who are most active in terms of the number of hours of content they watch. Write a SQL query that will retrieve the top 10 users with the most watched hours in the last month.
Tables:
• users table: user_id (integer), sign_up_date (date), subscription_type (text)
• watching_activity table: activity_id (integer), user_id (integer), date_time (timestamp), show_id (integer), hours_watched (float)
2️⃣ SQL Question 2: Analyzing Ratings For Netflix Shows
Question: Given a table of user ratings for Netflix shows, calculate the average rating for each show within a given month. Assume that there is a column for user_id, show_id, rating (out of 5 stars), and date of review. Order the results by month and then by average rating (descending order).
Tables:
• show_reviews table: review_id (integer), user_id (integer), review_date (timestamp), show_id (integer), stars (integer)
3️⃣ SQL Question 3: What does EXCEPT / MINUS SQL commands do?
Question: Explain the purpose and usage of the EXCEPT (or MINUS in some SQL dialects) SQL commands.
4️⃣ SQL Question 4: Filter Netflix Users Based on Viewing History and Subscription Status
Question: You are given a database of Netflix’s user viewing history and their current subscription status. Write a SQL query to find all active customers who watched more than 10 episodes of a show called “Stranger Things” in the last 30 days.
Tables:
• users table: user_id (integer), active (boolean)
• viewing_history table: user_id (integer), show_id (integer), episode_id (integer), watch_date (date)
• shows table: show_id (integer), show_name (text)
5️⃣ SQL Question 5: What does it mean to denormalize a database?
Question: Explain the concept and implications of denormalizing a database.
6️⃣ SQL Question 6: Filter and Match Customer’s Viewing Records
Question: As a data analyst at Netflix, you are asked to analyze the customer’s viewing records. You confirmed that Netflix is especially interested in customers who have been continuously watching a particular genre - ‘Documentary’ over the last month. The task is to find the name and email of those customers who have viewed more than five ‘Documentary’ movies within the last month. ‘Documentary’ could be a part of a broader genre category in the genre field (for example, ‘Documentary, History’). Therefore, the matching pattern could occur anywhere within the string.
Tables:
• movies table: movie_id (integer), title (text), genre (text), release_year (integer)
• customer table: user_id (integer), name (text), email (text), last_movie_watched (integer), date_watched (date)
Here you can find essential SQL Interview Resources👇
https://t.me/mysqldata
Like this post if you need more 👍❤️
Hope it helps :)
❤4👍2
We have now reached 85K subscribers on WhatsApp
Thank you guys❤️
Do subscribe if you haven’t yet for
BEST DATA ENGINEERING CONTENT
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
Thank you guys❤️
Do subscribe if you haven’t yet for
BEST DATA ENGINEERING CONTENT
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
❤2
Forwarded from Artificial Intelligence
𝟰 𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝘁𝗮𝗿𝘁 𝗖𝗼𝗱𝗶𝗻𝗴 𝗟𝗶𝗸𝗲 𝗮 𝗣𝗿𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Looking to kickstart your coding journey with Python? 🐍
Whether you’re an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jtpf9M
These platforms offer high-quality learning — no fees, no catch✅️
Looking to kickstart your coding journey with Python? 🐍
Whether you’re an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jtpf9M
These platforms offer high-quality learning — no fees, no catch✅️
❤2
𝗧𝗼𝗽 𝗠𝗡𝗖𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified 🎓
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified 🎓
Forwarded from Python Projects & Resources
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
🚀 Learn In-Demand Tech Skills for Free — Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified🎓️
🚀 Learn In-Demand Tech Skills for Free — Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified🎓️
❤1