Data Engineers
9.23K subscribers
314 photos
76 files
298 links
Free Data Engineering Ebooks & Courses
Download Telegram
๐Ÿ“– Data Engineering Roadmap 2025

๐Ÿญ. ๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—ฆ๐—ค๐—Ÿ (๐—”๐—ช๐—ฆ ๐—ฅ๐——๐—ฆ, ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—ฆ๐—ค๐—Ÿ, ๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ ๐—ฆ๐—ค๐—Ÿ)

๐Ÿ’ก Why? Cloud-managed databases are the backbone of modern data platforms.

โœ… Serverless, scalable, and cost-efficient
โœ… Automated backups & high availability
โœ… Works seamlessly with cloud data pipelines

๐Ÿฎ. ๐—ฑ๐—ฏ๐˜ (๐——๐—ฎ๐˜๐—ฎ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ง๐—ผ๐—ผ๐—น) โ€“ ๐—ง๐—ต๐—ฒ ๐—™๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—˜๐—Ÿ๐—ง

๐Ÿ’ก Why? Transform data inside your warehouse (Snowflake, BigQuery, Redshift).

โœ… SQL-based transformation โ€“ easy to learn
โœ… Version control & modular data modeling
โœ… Automates testing & documentation

๐Ÿฏ. ๐—”๐—ฝ๐—ฎ๐—ฐ๐—ต๐—ฒ ๐—”๐—ถ๐—ฟ๐—ณ๐—น๐—ผ๐˜„ โ€“ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„ ๐—ข๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป

๐Ÿ’ก Why? Automate and schedule complex ETL/ELT workflows.

โœ… DAG-based orchestration for dependency management
โœ… Integrates with cloud services (AWS, GCP, Azure)
โœ… Highly scalable & supports parallel execution

๐Ÿฐ. ๐——๐—ฒ๐—น๐˜๐—ฎ ๐—Ÿ๐—ฎ๐—ธ๐—ฒ โ€“ ๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—”๐—–๐—œ๐—— ๐—ถ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—Ÿ๐—ฎ๐—ธ๐—ฒ๐˜€

๐Ÿ’ก Why? Solves data consistency & reliability issues in Apache Spark & Databricks.
โœ… Supports ACID transactions in data lakes
โœ… Schema evolution & time travel
โœ… Enables incremental data processing

๐Ÿฑ. ๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ๐˜€ (๐—ฆ๐—ป๐—ผ๐˜„๐—ณ๐—น๐—ฎ๐—ธ๐—ฒ, ๐—•๐—ถ๐—ด๐—ค๐˜‚๐—ฒ๐—ฟ๐˜†, ๐—ฅ๐—ฒ๐—ฑ๐˜€๐—ต๐—ถ๐—ณ๐˜)

๐Ÿ’ก Why? Centralized, scalable, and powerful for analytics.
โœ… Handles petabytes of data efficiently
โœ… Pay-per-use pricing & serverless architecture

๐Ÿฒ. ๐—”๐—ฝ๐—ฎ๐—ฐ๐—ต๐—ฒ ๐—ž๐—ฎ๐—ณ๐—ธ๐—ฎ โ€“ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ง๐—ถ๐—บ๐—ฒ ๐—ฆ๐˜๐—ฟ๐—ฒ๐—ฎ๐—บ๐—ถ๐—ป๐—ด

๐Ÿ’ก Why? For real-time event-driven architectures.
โœ… High-throughput

๐Ÿณ. ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป & ๐—ฆ๐—ค๐—Ÿ โ€“ ๐—ง๐—ต๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด

๐Ÿ’ก Why? Every data engineer must master these!

โœ… SQL for querying, transformations & performance tuning
โœ… Python for automation, data processing, and API integrations

๐Ÿด. ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฟ๐—ถ๐—ฐ๐—ธ๐˜€ โ€“ ๐—จ๐—ป๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ & ๐—”๐—œ

๐Ÿ’ก Why? The go-to platform for big data processing & machine learning on the cloud.

โœ… Built on Apache Spark for fast distributed computing
โค4
Different Types of Data Analyst Interview Questions
๐Ÿ‘‡๐Ÿ‘‡

Technical Skills: These questions assess your proficiency with data analysis tools, programming languages (e.g., SQL, Python, R), and statistical methods.

Case Studies: You might be presented with real-world scenarios and asked how you would approach and solve them using data analysis.

Behavioral Questions: These questions aim to understand your problem-solving abilities, teamwork, communication skills, and how you handle challenges.

Statistical Questions: Expect questions related to descriptive and inferential statistics, hypothesis testing, regression analysis, and other quantitative techniques.

Domain Knowledge: Some interviews might delve into your understanding of the specific industry or domain the company operates in.

Machine Learning Concepts: Depending on the role, you might be asked about your understanding of machine learning algorithms and their applications.

Coding Challenges: These can assess your programming skills and your ability to translate algorithms into code.

Communication: You might need to explain technical concepts to non-technical stakeholders or present your findings effectively.

Problem-Solving: Expect questions that test your ability to approach complex problems logically and analytically.

Remember, the exact questions can vary widely based on the company and the role you're applying for. It's a good idea to review the job description and the company's background to tailor your preparation.
โค1
๐Ÿฅณ๐Ÿš€๐Ÿ‘‰Advantages of Data Analytics

Informed Decision-Making: Data analytics provides valuable insights, empowering organizations to make informed and strategic decisions based on real-time and historical data.

Operational Efficiency: By analyzing data, businesses can identify areas for improvement, optimize processes, and enhance overall operational efficiency.

Predictive Analysis: Data analytics enables organizations to predict trends, customer behavior, and potential risks, allowing them to proactively address issues before they arise.

Cost Reduction: Efficient data analysis helps identify cost-saving opportunities, streamline operations, and allocate resources more effectively, leading to overall cost reduction.

Enhanced Customer Experience: Understanding customer preferences and behavior through data analytics allows businesses to tailor products and services, improving customer satisfaction and loyalty.

Competitive Advantage: Organizations leveraging data analytics gain a competitive edge by staying ahead of market trends, understanding consumer needs, and adapting strategies accordingly.

Risk Management: Data analytics helps in identifying and mitigating risks by providing insights into potential issues, fraud detection, and compliance monitoring.

Personalization: Businesses can personalize marketing campaigns and services based on individual customer data, creating a more personalized and engaging experience.

Innovation: Data analytics fuels innovation by uncovering new patterns, opportunities, and areas for improvement, fostering a culture of continuous development within organizations.

Performance Measurement: Through key performance indicators (KPIs) and metrics, data analytics enables organizations to assess and monitor their performance, facilitating goal tracking and improvement initiatives.
โค1
Data Engineering Tools
โค2
Interview questions for Data Architect and Data Engineer positions:

Design and Architecture


1.โ  โ Design a data warehouse architecture for a retail company.
2.โ  โ How would you approach data governance in a large organization?
3.โ  โ Describe a data lake architecture and its benefits.
4.โ  โ How do you ensure data quality and integrity in a data warehouse?
5.โ  โ Design a data mart for a specific business domain (e.g., finance, healthcare).


Data Modeling and Database Design


1.โ  โ Explain the differences between relational and NoSQL databases.
2.โ  โ Design a database schema for a specific use case (e.g., e-commerce, social media).
3.โ  โ How do you approach data normalization and denormalization?
4.โ  โ Describe entity-relationship modeling and its importance.
5.โ  โ How do you optimize database performance?


Data Security and Compliance


1.โ  โ Describe data encryption methods and their applications.
2.โ  โ How do you ensure data privacy and confidentiality?
3.โ  โ Explain GDPR and its implications on data architecture.
4.โ  โ Describe access control mechanisms for data systems.
5.โ  โ How do you handle data breaches and incidents?


Data Engineer Interview Questions!!


Data Processing and Pipelines


1.โ  โ Explain the concepts of batch processing and stream processing.
2.โ  โ Design a data pipeline using Apache Beam or Apache Spark.
3.โ  โ How do you handle data integration from multiple sources?
4.โ  โ Describe data transformation techniques (e.g., ETL, ELT).
5.โ  โ How do you optimize data processing performance?


Big Data Technologies


1.โ  โ Explain Hadoop ecosystem and its components.
2.โ  โ Describe Spark RDD, DataFrame, and Dataset.
3.โ  โ How do you use NoSQL databases (e.g., MongoDB, Cassandra)?
4.โ  โ Explain cloud-based big data platforms (e.g., AWS, GCP, Azure).
5.โ  โ Describe containerization using Docker.


Data Storage and Retrieval


1.โ  โ Explain data warehousing concepts (e.g., fact tables, dimension tables).
2.โ  โ Describe column-store and row-store databases.
3.โ  โ How do you optimize data storage for query performance?
4.โ  โ Explain data caching mechanisms.
5.โ  โ Describe graph databases and their applications.


Behavioral and Soft Skills


1.โ  โ Can you describe a project you led and the challenges you faced?
2.โ  โ How do you collaborate with cross-functional teams?
3.โ  โ Explain your experience with Agile development methodologies.
4.โ  โ Describe your approach to troubleshooting complex data issues.
5.โ  โ How do you stay up-to-date with industry trends and technologies?


Additional Tips


1.โ  โ Review the company's technology stack and be prepared to discuss relevant tools and technologies.
2.โ  โ Practice whiteboarding exercises to improve your design and problem-solving skills.
3.โ  โ Prepare examples of your experience with data architecture and engineering concepts.
4.โ  โ Demonstrate your ability to communicate complex technical concepts to non-technical stakeholders.
5.โ  โ Show enthusiasm and passion for data architecture and engineering.
โค3
ETL vs ELT โ€“ Explained Using Apple Juice analogy! ๐ŸŽ๐Ÿงƒ

We often hear about ETL and ELT in the data world โ€” but how do they actually apply in tools like Excel and Power BI?

Letโ€™s break it down with a simple and relatable analogy ๐Ÿ‘‡

โœ… ETL (Extract โ†’ Transform โ†’ Load)

๐Ÿงƒ First you make the juice, then you deliver it

โžก๏ธ Apples โ†’ Juice โ†’ Truck

๐Ÿ”น In Power BI / Excel:

You clean and transform the data in Power Query
Then load the final data into your report or sheet
๐Ÿ’ก Thatโ€™s ETL โ€“ transformation happens before loading



โœ… ELT (Extract โ†’ Load โ†’ Transform)

๐Ÿ First you deliver the apples, and make juice later

โžก๏ธ Apples โ†’ Truck โ†’ Juice

๐Ÿ”น In Power BI / Excel:

You load raw data into your model or sheet
Then transform it using DAX, formulas, or pivot tables
๐Ÿ’ก Thatโ€™s ELT โ€“ transformation happens after loading
โค4
Understand the power of Data Lakehouse Architecture for ๐—™๐—ฅ๐—˜๐—˜ here...


๐Ÿšจ๐—ข๐—น๐—ฑ ๐˜„๐—ฎ๐˜†
โ€ข Complicated ETL processes for data integration.
โ€ข Silos of data storage, separating structured and unstructured data.
โ€ข High data storage and management costs in traditional warehouses.
โ€ข Limited scalability and delayed access to real-time insights.

โœ…๐—ก๐—ฒ๐˜„ ๐—ช๐—ฎ๐˜†
โ€ข Streamlined data ingestion and processing with integrated SQL capabilities.
โ€ข Unified storage layer accommodating both structured and unstructured data.
โ€ข Cost-effective storage by combining benefits of data lakes and warehouses.
โ€ข Real-time analytics and high-performance queries with SQL integration.

The shift?

Unified Analytics and Real-Time Insights > Siloed and Delayed Data Processing

Leveraging SQL to manage data in a data lakehouse architecture transforms how businesses handle data.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
โค2
Data Engineers
Python Interview.pdf
Top 100 Python Interview Questions ๐Ÿš€๐Ÿ”ฅ
โค1
Common Data Cleaning Techniques for Data Analysts

Remove Duplicates:

Purpose: Eliminate repeated rows to maintain unique data.

Example: SELECT DISTINCT column_name FROM table;


Handle Missing Values:

Purpose: Fill, remove, or impute missing data.

Example:

Remove: df.dropna() (in Python/Pandas)

Fill: df.fillna(0)


Standardize Data:

Purpose: Convert data to a consistent format (e.g., dates, numbers).

Example: Convert text to lowercase: df['column'] = df['column'].str.lower()


Remove Outliers:

Purpose: Identify and remove extreme values.

Example: df = df[df['column'] < threshold]


Correct Data Types:

Purpose: Ensure columns have the correct data type (e.g., dates as datetime, numeric values as integers).

Example: df['date'] = pd.to_datetime(df['date'])


Normalize Data:

Purpose: Scale numerical data to a standard range (0 to 1).

Example: from sklearn.preprocessing import MinMaxScaler; df['scaled'] = MinMaxScaler().fit_transform(df[['column']])


Data Transformation:

Purpose: Transform or aggregate data for better analysis (e.g., log transformations, aggregating columns).

Example: Apply log transformation: df['log_column'] = np.log(df['column'] + 1)


Handle Categorical Data:

Purpose: Convert categorical data into numerical data using encoding techniques.

Example: df['encoded_column'] = pd.get_dummies(df['category_column'])


Impute Missing Values:

Purpose: Fill missing values with a meaningful value (e.g., mean, median, or a specific value).

Example: df['column'] = df['column'].fillna(df['column'].mean())

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
โค3
Top 20 #SQL INTERVIEW QUESTIONS

1๏ธโƒฃ Explain Order of Execution of SQL query
2๏ธโƒฃ Provide a use case for each of the functions Rank, Dense_Rank & Row_Number ( ๐Ÿ’ก majority struggle )
3๏ธโƒฃ Write a query to find the cumulative sum/Running Total
4๏ธโƒฃ Find the Most selling product by sales/ highest Salary of employees
5๏ธโƒฃ Write a query to find the 2nd/nth highest Salary of employees
6๏ธโƒฃ Difference between union vs union all
7๏ธโƒฃ Identify if there any duplicates in a table
8๏ธโƒฃ Scenario based Joins question, understanding of Inner, Left and Outer Joins via simple yet tricky question
9๏ธโƒฃ LAG, write a query to find all those records where the transaction value is greater then previous transaction value
1๏ธโƒฃ 0๏ธโƒฃ Rank vs Dense Rank, query to find the 2nd highest Salary of employee
( Ideal soln should handle ties)
1๏ธโƒฃ 1๏ธโƒฃ Write a query to find the Running Difference (Ideal sol'n using windows function)
1๏ธโƒฃ 2๏ธโƒฃ Write a query to display year on year/month on month growth
1๏ธโƒฃ 3๏ธโƒฃ Write a query to find rolling average of daily sign-ups
1๏ธโƒฃ 4๏ธโƒฃ Write a query to find the running difference using self join (helps in understanding the logical approach, ideally this question is solved via windows function)
1๏ธโƒฃ 5๏ธโƒฃ Write a query to find the cumulative sum using self join
(you can use windows function to solve this question)
1๏ธโƒฃ6๏ธโƒฃ Differentiate between a clustered index and a non-clustered index?
1๏ธโƒฃ7๏ธโƒฃ What is a Candidate key?
1๏ธโƒฃ8๏ธโƒฃWhat is difference between Primary key and Unique key?
1๏ธโƒฃ9๏ธโƒฃWhat's the difference between RANK & DENSE_RANK in SQL?
2๏ธโƒฃ0๏ธโƒฃ Whats the difference between LAG & LEAD in SQL?

Access SQL Learning Series for Free: https://t.me/sqlspecialist/523

Hope it helps :)
โค1
SQL Cheatsheet ๐Ÿ“

This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether youโ€™re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.

1. Database Basics
- CREATE DATABASE db_name;
- USE db_name;

2. Tables
- Create Table: CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table: DROP TABLE table_name;
- Alter Table: ALTER TABLE table_name ADD column_name datatype;

3. Insert Data
- INSERT INTO table_name (col1, col2) VALUES (val1, val2);

4. Select Queries
- Basic Select: SELECT * FROM table_name;
- Select Specific Columns: SELECT col1, col2 FROM table_name;
- Select with Condition: SELECT * FROM table_name WHERE condition;

5. Update Data
- UPDATE table_name SET col1 = value1 WHERE condition;

6. Delete Data
- DELETE FROM table_name WHERE condition;

7. Joins
- Inner Join: SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join: SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join: SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;

8. Aggregations
- Count: SELECT COUNT(*) FROM table_name;
- Sum: SELECT SUM(col) FROM table_name;
- Group By: SELECT col, COUNT(*) FROM table_name GROUP BY col;

9. Sorting & Limiting
- Order By: SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results: SELECT * FROM table_name LIMIT n;

10. Indexes
- Create Index: CREATE INDEX idx_name ON table_name (col);
- Drop Index: DROP INDEX idx_name;

11. Subqueries
- SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);

12. Views
- Create View: CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View: DROP VIEW view_name;
โค4
ML Engineer vs AI Engineer

ML Engineer / MLOps

-Focuses on the deployment of machine learning models.
-Bridges the gap between data scientists and production environments.
-Designing and implementing machine learning models into production.
-Automating and orchestrating ML workflows and pipelines.
-Ensuring reproducibility, scalability, and reliability of ML models.
-Programming: Python, R, Java
-Libraries: TensorFlow, PyTorch, Scikit-learn
-MLOps: MLflow, Kubeflow, Docker, Kubernetes, Git, Jenkins, CI/CD tools

AI Engineer / Developer

- Applying AI techniques to solve specific problems.
- Deep knowledge of AI algorithms and their applications.
- Developing and implementing AI models and systems.
- Building and integrating AI solutions into existing applications.
- Collaborating with cross-functional teams to understand requirements and deliver AI-powered solutions.
- Programming: Python, Java, C++
- Libraries: TensorFlow, PyTorch, Keras, OpenCV
- Frameworks: ONNX, Hugging Face
โค2
If you want to Excel as a Data Analyst and land a high-paying job, master these essential skills:

1๏ธโƒฃ Data Extraction & Processing:
โ€ข SQL โ€“ SELECT, JOIN, GROUP BY, CTE, WINDOW FUNCTIONS
โ€ข Python/R for Data Analysis โ€“ Pandas, NumPy, Matplotlib, Seaborn
โ€ข Excel โ€“ Pivot Tables, VLOOKUP, XLOOKUP, Power Query

2๏ธโƒฃ Data Cleaning & Transformation:
โ€ข Handling Missing Data โ€“ COALESCE(), IFNULL(), DROPNA()
โ€ข Data Normalization โ€“ Removing duplicates, standardizing formats
โ€ข ETL Process โ€“ Extract, Transform, Load

3๏ธโƒฃ Exploratory Data Analysis (EDA):
โ€ข Descriptive Statistics โ€“ Mean, Median, Mode, Variance, Standard Deviation
โ€ข Data Visualization โ€“ Bar Charts, Line Charts, Heatmaps, Histograms

4๏ธโƒฃ Business Intelligence & Reporting:
โ€ข Power BI & Tableau โ€“ Dashboards, DAX, Filters, Drill-through
โ€ข Google Data Studio โ€“ Interactive reports

5๏ธโƒฃ Data-Driven Decision Making:
โ€ข A/B Testing โ€“ Hypothesis testing, P-values
โ€ข Forecasting & Trend Analysis โ€“ Time Series Analysis
โ€ข KPI & Metrics Analysis โ€“ ROI, Churn Rate, Customer Segmentation

6๏ธโƒฃ Data Storytelling & Communication:
โ€ข Presentation Skills โ€“ Explain insights to non-technical stakeholders
โ€ข Dashboard Best Practices โ€“ Clean UI, relevant KPIs, interactive visuals

7๏ธโƒฃ Bonus: Automation & AI Integration
โ€ข SQL Query Optimization โ€“ Improve query performance
โ€ข Python Scripting โ€“ Automate repetitive tasks
โ€ข ChatGPT & AI Tools โ€“ Enhance productivity

Like this post if you need a complete tutorial on all these topics! ๐Ÿ‘โค๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)

#dataanalysts
โค4
Data Engineers โ€“ Donโ€™t Just Learn Tools. Learn This:

So youโ€™re learning:
โ€“ Spark โœ…
โ€“ Airflow โœ…
โ€“ dbt โœ…
โ€“ Kafka โœ…

But hereโ€™s a hard truth ๐Ÿ‘‡
๐Ÿง  Tools change. Principles donโ€™t.

Top 1% Data Engineers focus on:

๐Ÿ”ธ Data modeling โ€“ Understand star vs snowflake, SCDs, normalization.
๐Ÿ”ธ Data contracts โ€“ Build reliable pipelines, not spaghetti code.
๐Ÿ”ธ System design โ€“ Think like a backend engineer. Learn how data flows.
๐Ÿ”ธ Observability โ€“ Logging, metrics, lineage. Be the one who finds data bugs.

๐Ÿ’ฅ Want to level up? Do this:
โœ… Build a mini data warehouse from scratch (on DuckDB + Airflow)
โœ… Join open-source data eng projects
โœ… Read โ€œThe Data Engineering Cookbookโ€ (free)

๐Ÿ“ˆ Donโ€™t just run pipelines. Architect them.
โค6
If I were planning for Data Engineering interviews in the upcoming months then I will prepare this way โ›ต



1. Learn important SQL concepts
Go through all key topics in SQL like joins, CTEs, window functions, group by, having etc.

2. Solve 50+ recently asked SQL queries
Practice queries from real interviews. focus on tricky joins, aggregations and filtering.

3. Solve 50+ Python coding questions
Focus on:

List, dictionary, string problems, File handling, Algorithms (sorting, searching, etc.)


4. Learn PySpark basics
Understand: RDDs, DataFrames , Datasets & Spark SQL


5. Practice 20 top PySpark coding tasks
Work on real coding examples using PySpark -data filtering, joins, aggregations, etc.

6. Revise Data Warehousing concepts
Focus on:

Star and snowflake schema
Normalization and denormalization


7. Understand the data model used in your project
Know the structure of your tables and how they connect.


8. Practice explaining your project
Be ready to talk about: Architecture, Tools used, Pipeline flow & Business value


9. Review cloud services used in your project
For AWS, Azure, GCP:
Understand what services you used, why you used them nd how they work.

10. Understand your role in the project
Be clear on what you did technically . What problems you solved and how.

11. Prepare to explain the full data pipeline
From data ingestion to storage to processing - use examples.

12. Go through common Data Engineer interview questions
Practice answering questions about ETL, SQL, Python, Spark, cloud etc.

13. Read recent interview experiences
Check LinkedIn , GeeksforGeeks, Medium for company-specific interview experiences.

14. Prepare for high-level system design
questions.
โค5
Use of Machine Learning in Data Analytics
โค2