Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐
Dreaming of a career in Data Analytics but donโt know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified โ ๏ธ
Dreaming of a career in Data Analytics but donโt know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified โ ๏ธ
โCommon Mistakes In SQL JOINS
Interviewer can only trick you with two things in SQL JOIN questions!๐คท
Maximum people are making the most common mistake in SQL JOIN even after gaining few years of experience!
What makes SQL JOIN tricky?
1. Duplicate Values
2. NULL
Once you understand handling both, you can solve any of the toughest SQL JOIN questions in any interview.
Read more.....
Interviewer can only trick you with two things in SQL JOIN questions!๐คท
Maximum people are making the most common mistake in SQL JOIN even after gaining few years of experience!
What makes SQL JOIN tricky?
1. Duplicate Values
2. NULL
Once you understand handling both, you can solve any of the toughest SQL JOIN questions in any interview.
Read more.....
โค1
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ถ๐ฐ๐ธ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
๐ You donโt need to break the bank to break into AI!๐ชฉ
If youโve been searching for beginner-friendly, certified AI learningโGoogle Cloud has you covered๐ค๐จโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SZQRIU
๐All taught by industry-leading instructorsโ ๏ธ
๐ You donโt need to break the bank to break into AI!๐ชฉ
If youโve been searching for beginner-friendly, certified AI learningโGoogle Cloud has you covered๐ค๐จโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SZQRIU
๐All taught by industry-leading instructorsโ ๏ธ
โค1
Common Data Cleaning Techniques for Data Analysts
Remove Duplicates:
Purpose: Eliminate repeated rows to maintain unique data.
Example: SELECT DISTINCT column_name FROM table;
Handle Missing Values:
Purpose: Fill, remove, or impute missing data.
Example:
Remove: df.dropna() (in Python/Pandas)
Fill: df.fillna(0)
Standardize Data:
Purpose: Convert data to a consistent format (e.g., dates, numbers).
Example: Convert text to lowercase: df['column'] = df['column'].str.lower()
Remove Outliers:
Purpose: Identify and remove extreme values.
Example: df = df[df['column'] < threshold]
Correct Data Types:
Purpose: Ensure columns have the correct data type (e.g., dates as datetime, numeric values as integers).
Example: df['date'] = pd.to_datetime(df['date'])
Normalize Data:
Purpose: Scale numerical data to a standard range (0 to 1).
Example: from sklearn.preprocessing import MinMaxScaler; df['scaled'] = MinMaxScaler().fit_transform(df[['column']])
Data Transformation:
Purpose: Transform or aggregate data for better analysis (e.g., log transformations, aggregating columns).
Example: Apply log transformation: df['log_column'] = np.log(df['column'] + 1)
Handle Categorical Data:
Purpose: Convert categorical data into numerical data using encoding techniques.
Example: df['encoded_column'] = pd.get_dummies(df['category_column'])
Impute Missing Values:
Purpose: Fill missing values with a meaningful value (e.g., mean, median, or a specific value).
Example: df['column'] = df['column'].fillna(df['column'].mean())
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Remove Duplicates:
Purpose: Eliminate repeated rows to maintain unique data.
Example: SELECT DISTINCT column_name FROM table;
Handle Missing Values:
Purpose: Fill, remove, or impute missing data.
Example:
Remove: df.dropna() (in Python/Pandas)
Fill: df.fillna(0)
Standardize Data:
Purpose: Convert data to a consistent format (e.g., dates, numbers).
Example: Convert text to lowercase: df['column'] = df['column'].str.lower()
Remove Outliers:
Purpose: Identify and remove extreme values.
Example: df = df[df['column'] < threshold]
Correct Data Types:
Purpose: Ensure columns have the correct data type (e.g., dates as datetime, numeric values as integers).
Example: df['date'] = pd.to_datetime(df['date'])
Normalize Data:
Purpose: Scale numerical data to a standard range (0 to 1).
Example: from sklearn.preprocessing import MinMaxScaler; df['scaled'] = MinMaxScaler().fit_transform(df[['column']])
Data Transformation:
Purpose: Transform or aggregate data for better analysis (e.g., log transformations, aggregating columns).
Example: Apply log transformation: df['log_column'] = np.log(df['column'] + 1)
Handle Categorical Data:
Purpose: Convert categorical data into numerical data using encoding techniques.
Example: df['encoded_column'] = pd.get_dummies(df['category_column'])
Impute Missing Values:
Purpose: Fill missing values with a meaningful value (e.g., mean, median, or a specific value).
Example: df['column'] = df['column'].fillna(df['column'].mean())
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค2
๐ง๐ผ๐ฝ ๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐ด๐ด๐น๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ถ๐๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐๐บ๐ฝ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Want to break into Data Science but not sure where to start?๐
These free Kaggle micro-courses are the perfect launchpad โ beginner-friendly, self-paced, and yes, they come with certifications!๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l164FN
No subscription. No hidden fees. Just pure learning from a trusted platformโ ๏ธ
Want to break into Data Science but not sure where to start?๐
These free Kaggle micro-courses are the perfect launchpad โ beginner-friendly, self-paced, and yes, they come with certifications!๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l164FN
No subscription. No hidden fees. Just pure learning from a trusted platformโ ๏ธ
10 Steps to Landing a High Paying Job in Data Analytics
1. Learn SQL - joins & windowing functions is most important
2. Learn Excel- pivoting, lookup, vba, macros is must
3. Learn Dashboarding on POWER BI/ Tableau
4. โ Learn Python basics- mainly pandas, numpy, matplotlib and seaborn libraries
5. โ Know basics of descriptive statistics
6. โ With AI/ copilot integrated in every tool, know how to use it and add to your projects
7. โ Have hands on any 1 cloud platform- AZURE/AWS/GCP
8. โ WORK on atleast 2 end to end projects and create a portfolio of it
9. โ Prepare an ATS friendly resume & start applying
10. โ Attend interviews (you might fail in first 2-3 interviews thats fine),make a list of questions you could not answer & prepare those.
Give more interview to boost your chances through consistent practice & feedback ๐๐
1. Learn SQL - joins & windowing functions is most important
2. Learn Excel- pivoting, lookup, vba, macros is must
3. Learn Dashboarding on POWER BI/ Tableau
4. โ Learn Python basics- mainly pandas, numpy, matplotlib and seaborn libraries
5. โ Know basics of descriptive statistics
6. โ With AI/ copilot integrated in every tool, know how to use it and add to your projects
7. โ Have hands on any 1 cloud platform- AZURE/AWS/GCP
8. โ WORK on atleast 2 end to end projects and create a portfolio of it
9. โ Prepare an ATS friendly resume & start applying
10. โ Attend interviews (you might fail in first 2-3 interviews thats fine),make a list of questions you could not answer & prepare those.
Give more interview to boost your chances through consistent practice & feedback ๐๐
โค1
Forwarded from Python Projects & Resources
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ + ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐๐๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
Ready to upgrade your career without spending a dime?โจ๏ธ
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!๐ฒ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications๐โ ๏ธ
Ready to upgrade your career without spending a dime?โจ๏ธ
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!๐ฒ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications๐โ ๏ธ
โค1
๐ฎ Data Analyst Vs Data Engineer Vs Data Scientist ๐ฎ
Skills required to become data analyst
๐ Advanced Excel, Oracle/SQL
๐ Python/R
Skills required to become data engineer
๐ Python/ Java.
๐ SQL, NoSQL technologies like Cassandra or MongoDB
๐ Big data technologies like Hadoop, Hive/ Pig/ Spark
Skills required to become data Scientist
๐ In-depth knowledge of tools like R/ Python/ SAS.
๐ Well versed in various machine learning algorithms like scikit-learn, karas and tensorflow
๐ SQL and NoSQL
Bonus skill required: Data Visualization (PowerBI/ Tableau) & Statistics
Skills required to become data analyst
๐ Advanced Excel, Oracle/SQL
๐ Python/R
Skills required to become data engineer
๐ Python/ Java.
๐ SQL, NoSQL technologies like Cassandra or MongoDB
๐ Big data technologies like Hadoop, Hive/ Pig/ Spark
Skills required to become data Scientist
๐ In-depth knowledge of tools like R/ Python/ SAS.
๐ Well versed in various machine learning algorithms like scikit-learn, karas and tensorflow
๐ SQL and NoSQL
Bonus skill required: Data Visualization (PowerBI/ Tableau) & Statistics
โค3
Forwarded from Artificial Intelligence
๐ฑ ๐๐ฅ๐๐ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ผ๐ฟ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐ ๐ฏ๐ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ, ๐๐๐ , ๐จ๐ฑ๐ฎ๐ฐ๐ถ๐๐ & ๐ ๐ผ๐ฟ๐ฒ๐
Looking to learn Python from scratchโwithout spending a rupee? ๐ป
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐ฅ๐จโ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HNeyBQ
Kickstart your careerโ ๏ธ
Looking to learn Python from scratchโwithout spending a rupee? ๐ป
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐ฅ๐จโ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HNeyBQ
Kickstart your careerโ ๏ธ
โค1
Step-by-step guide to become a Data Analyst in 2025โ๐
1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.
2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.
3. Get Formal Education or Certification:
A bachelorโs degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.
4. Build Hands-on Experience:
Work on real-world projectsโuse Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.
5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.
6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโthese are just as important as technical skills.
7. Apply for Entry-Level Jobs:
Look for roles like โJunior Data Analystโ or โBusiness Analyst.โ Tailor your resume to highlight your skills and portfolio.
8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.
React โค๏ธ for more
1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.
2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.
3. Get Formal Education or Certification:
A bachelorโs degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.
4. Build Hands-on Experience:
Work on real-world projectsโuse Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.
5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.
6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโthese are just as important as technical skills.
7. Apply for Entry-Level Jobs:
Look for roles like โJunior Data Analystโ or โBusiness Analyst.โ Tailor your resume to highlight your skills and portfolio.
8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.
React โค๏ธ for more
โค1
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐ช๐ถ๐น๐น ๐๐ฐ๐๐๐ฎ๐น๐น๐ ๐จ๐ฝ๐ด๐ฟ๐ฎ๐ฑ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
I failed my first data interview โ and hereโs why:โฌ๏ธ
โ No structured learning
โ No real projects
โ Just random YouTube tutorials and half-read blogs
If this sounds like you, donโt repeat my mistakeโจ๏ธ
Recruiters want proof of skills, not just buzzwords๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ka1ZOl
All The Best ๐
I failed my first data interview โ and hereโs why:โฌ๏ธ
โ No structured learning
โ No real projects
โ Just random YouTube tutorials and half-read blogs
If this sounds like you, donโt repeat my mistakeโจ๏ธ
Recruiters want proof of skills, not just buzzwords๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ka1ZOl
All The Best ๐
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
โค1
Forwarded from Artificial Intelligence
๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฆ๐ค๐ ๐๐ฎ๐ป ๐๐ฒ ๐๐๐ป! ๐ฐ ๐๐ป๐๐ฒ๐ฟ๐ฎ๐ฐ๐๐ถ๐๐ฒ ๐ฃ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐ ๐ง๐ต๐ฎ๐ ๐๐ฒ๐ฒ๐น ๐๐ถ๐ธ๐ฒ ๐ฎ ๐๐ฎ๐บ๐ฒ๐
Think SQL is all about dry syntax and boring tutorials? Think again.๐ค
These 4 gamified SQL websites turn learning into an adventure โ from solving murder mysteries to exploring virtual islands, youโll write real SQL queries while cracking clues and completing missions๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and funโ ๏ธ
Think SQL is all about dry syntax and boring tutorials? Think again.๐ค
These 4 gamified SQL websites turn learning into an adventure โ from solving murder mysteries to exploring virtual islands, youโll write real SQL queries while cracking clues and completing missions๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and funโ ๏ธ
Data Analyst vs Data Engineer: Must-Know Differences
Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.
Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.
Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.
Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.
Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค1๐1
Forwarded from Python Projects & Resources
๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐ธ๐ถ๐น๐น๐๐ฒ๐ ๐
โ Artificial Intelligence โ Master AI & Machine Learning
โ Blockchain โ Understand decentralization & smart contracts๐ฐ
โ Cloud Computing โ Learn AWS, Azure&cloud infrastructure โ
โ Web 3.0 โ Explore the future of the Internet &Apps ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified ๐
โ Artificial Intelligence โ Master AI & Machine Learning
โ Blockchain โ Understand decentralization & smart contracts๐ฐ
โ Cloud Computing โ Learn AWS, Azure&cloud infrastructure โ
โ Web 3.0 โ Explore the future of the Internet &Apps ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified ๐
โค2
Forwarded from Python Projects & Resources
๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified ๐
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified ๐