Offshore
Photo
Fiscal.ai
It costs $284 million to buy an EUV machine from ASML, on average.

Talk about pricing power.

$ASML https://t.co/5VK7DLbLI0
tweet
Offshore
Photo
Moon Dev
What if Jim Simons showed every step of the way since he started algo trading?

I do.

I'm not there yet, but this is going to be one hell of a ride

all shared on private zooms https://t.co/xJlpXyDfkY
tweet
Offshore
Photo
Moon Dev
I Built a Swarm of 20+ AI Trading Agents So You Don't Have to Trade Alone
tweet
Offshore
Photo
App Economy Insights
๐Ÿ“Š This Week in Visuals

$AAPL $META $SAMSUNG $ASML $V $MA $LVMH $UNH $SAP $LRCX $IBM $AXP $KLAC $BA $GEV $TXN $T $VZ $NOW $LMT $SBUX $UPS $GM $SNDK $SOFI $LUV $AAL $APPF
https://t.co/uZvriQAxQj
tweet
Offshore
Photo
Fiscal.ai
29% of Tesla's revenue now comes from non-automotive segments.

Energy Generation & Storage: 15%
Services & Other: 14%

What will this look like in 5 years?

$TSLA https://t.co/Snj79EEFcb
tweet
Offshore
Photo
Brady Long
red pill or blue pill? https://t.co/OSOj9cKIAn
tweet
Offshore
Video
Dimitry Nakhla | Babylon Capitalยฎ
Chris Hohn on AI risk, moats, & disruption:

โ€œThe world is changing so much that some of these moats, ๐š๐ฉ๐ฉ๐š๐ซ๐ž๐ง๐ญ ๐ฆ๐จ๐š๐ญ๐ฌ, ๐š๐ซ๐ž ๐ฃ๐ฎ๐ฌ๐ญ ๐›๐ž๐ข๐ง๐  ๐›๐ž๐š๐ญ๐ž๐ง ๐๐จ๐ฐ๐ง ๐›๐ฒ ๐€๐ˆ and other disruption forces. So the forces of disruption are actually rising.โ€

How does Hohn think about navigating that risk?

โ€œYou really want something thatโ€™s obviousโ€ฆ ๐™จ๐™ช๐™จ๐™ฉ๐™–๐™ž๐™ฃ๐™–๐™—๐™ก๐™š ๐™—๐™–๐™ง๐™ง๐™ž๐™š๐™ง๐™จ ๐™ฉ๐™ค ๐™š๐™ฃ๐™ฉ๐™ง๐™ฎ.โ€
___

So what are barriers to entry?

๐’๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐š๐ฅ ๐š๐๐ฏ๐š๐ง๐ญ๐š๐ ๐ž๐ฌ ๐ญ๐ก๐š๐ญ ๐ฆ๐š๐ค๐ž ๐ข๐ญ ๐๐ข๐Ÿ๐Ÿ๐ข๐œ๐ฎ๐ฅ๐ญ ๐จ๐ซ ๐ฎ๐ง๐ž๐œ๐จ๐ง๐จ๐ฆ๐ข๐œ ๐Ÿ๐จ๐ซ ๐œ๐จ๐ฆ๐ฉ๐ž๐ญ๐ข๐ญ๐จ๐ซ๐ฌ ๐ญ๐จ ๐ซ๐ž๐ฉ๐ฅ๐ข๐œ๐š๐ญ๐ž ๐š ๐›๐ฎ๐ฌ๐ข๐ง๐ž๐ฌ๐ฌ.

Some of the most important ones ๐Ÿ‘‡๐Ÿฝ

๐‡๐ข๐ ๐ก ๐ฌ๐ฐ๐ข๐ญ๐œ๐ก๐ข๐ง๐  ๐œ๐จ๐ฌ๐ญ๐ฌ: Customers face real friction (cost, risk, workflow disruption) if they leave

๐ˆ๐ง๐ฌ๐ญ๐š๐ฅ๐ฅ๐ž๐ ๐›๐š๐ฌ๐ž: Large embedded footprint that compounds over time

๐‚๐จ๐ฆ๐ฉ๐ฅ๐ž๐ฑ ๐ˆ๐: Deep patents, proprietary designs, or trade secrets

๐๐ž๐ญ๐ฐ๐จ๐ซ๐ค ๐ž๐Ÿ๐Ÿ๐ž๐œ๐ญ๐ฌ: Product becomes more valuable as more users participate

๐Š๐ง๐จ๐ฐ๐ฅ๐ž๐๐ ๐ž / ๐ฉ๐ซ๐จ๐œ๐ž๐ฌ๐ฌ ๐ค๐ง๐จ๐ฐ-๐ก๐จ๐ฐ: Decades of accumulated expertise that canโ€™t be shortcut

๐ˆ๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐ฌ๐œ๐š๐ฅ๐ž: Massive physical or digital build-out thatโ€™s hard to replicate

๐‘๐ž๐ ๐ฎ๐ฅ๐š๐ญ๐จ๐ซ๐ฒ / ๐ฅ๐ž๐ ๐š๐ฅ ๐ฆ๐จ๐š๐ญ: Standards, certifications, or regulatory embedment
___

Hohn has emphasized that ๐ฒ๐จ๐ฎ ๐ฐ๐š๐ง๐ญ ๐ฆ๐ฎ๐ฅ๐ญ๐ข๐ฉ๐ฅ๐ž ๐›๐š๐ซ๐ซ๐ข๐ž๐ซ๐ฌ ๐ฐ๐จ๐ซ๐ค๐ข๐ง๐  ๐ญ๐จ๐ ๐ž๐ญ๐ก๐ž๐ซ.

๐Ž๐ง๐ž ๐ฆ๐จ๐š๐ญ ๐ข๐ฌ ๐™›๐™ง๐™–๐™œ๐™ž๐™ก๐™š. ๐’๐ญ๐š๐œ๐ค๐ž๐ ๐ฆ๐จ๐š๐ญ๐ฌ ๐š๐ซ๐ž ๐™™๐™ช๐™ง๐™–๐™—๐™ก๐™š.

Examples ๐Ÿ‘‡๐Ÿฝ

$ASML โ†’ Installed base, extreme IP complexity, knowledge moat, high switching costs, infrastructure scale

$FICO โ†’ Regulatory embedment, network effects, switching costs, data advantage

$MSFT โ†’ Switching costs, network effects, ecosystem lock-in, scale infrastructure

$SPGI โ†’ Regulatory reliance, switching costs, network effects, brand trust

$AMZN โ†’ Infrastructure scale, switching costs (AWS + Prime), ecosystem lock-in, data advantages

$ICE โ†’ Regulatory licenses, switching costs, network effects, mission-critical infrastructure

$TDG โ†’ Proprietary IP, certification barriers, sole-source positions, high switching costs
___

๐๐จ๐ญ๐ญ๐จ๐ฆ ๐ฅ๐ข๐ง๐ž: ๐€๐ฌ ๐๐ข๐ฌ๐ซ๐ฎ๐ฉ๐ญ๐ข๐จ๐ง ๐ฉ๐ซ๐ž๐ฌ๐ฌ๐ฎ๐ซ๐ž ๐ซ๐ข๐ฌ๐ž๐ฌ, ๐›๐ฎ๐ฌ๐ข๐ง๐ž๐ฌ๐ฌ๐ž๐ฌ ๐ฉ๐ซ๐จ๐ญ๐ž๐œ๐ญ๐ž๐ ๐›๐ฒ ๐ฆ๐ฎ๐ฅ๐ญ๐ข๐ฉ๐ฅ๐ž ๐ซ๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ข๐ง๐  ๐ฆ๐จ๐š๐ญ๐ฌ ๐š๐ซ๐ž ๐Ÿ๐š๐ซ ๐ฆ๐จ๐ซ๐ž ๐ฅ๐ข๐ค๐ž๐ฅ๐ฒ ๐ญ๐จ ๐œ๐จ๐ฆ๐ฉ๐จ๐ฎ๐ง๐ ๐ญ๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐œ๐ก๐š๐ง๐ ๐ž.

___

Video: Money Maze Podcast (11/13/25)
tweet
Offshore
Photo
Quiver Quantitative
BREAKING: A pro-Trump Super PAC just filed massive ad spending against Thomas Massie.

This comes just hours after the new Epstein file release.

Look at this screenshot from Quiver: https://t.co/FxJ7K2VdQu
tweet
Offshore
Photo
Moon Dev
since we cant use the twitter api to track sentiment

i am tracking HLP who is hyperliquids market maker

they turned $1,000 to $140,000,000 btw https://t.co/jblgpuPuat
tweet