Building A Generative AI Platform - Это очень подробная статья (июль 2024) о построении платформы для генеративного AI, которая постепенно описывает архитектуру от простейшей (запрос → модель → ответ) до сложной production-системы. Основные компоненты:
1) Context construction (RAG с embedding/term-based поиском, SQL-запросы, веб-поиск, query rewriting),
2) Guardrails (входные для защиты от утечек PII и jailbreaking, выходные для проверки качества/токсичности/галлюцинаций),
3) Router и Gateway (маршрутизация запросов к разным моделям, унифицированный доступ, fallback, контроль доступа),
4) Cache (prompt cache, exact cache, semantic cache для снижения латентности и стоимости),
5) Complex logic (циклы, условное ветвление, write-действия),
6) Observability (метрики, логи, трейсы) и
7) Orchestration (LangChain, LlamaIndex и др., но автор советует начинать без них).
А какие вы порекомендуете свежие ресурсы? Если хотите добавить ее как ссылку в коммент, можно использовать код:
1) Context construction (RAG с embedding/term-based поиском, SQL-запросы, веб-поиск, query rewriting),
2) Guardrails (входные для защиты от утечек PII и jailbreaking, выходные для проверки качества/токсичности/галлюцинаций),
3) Router и Gateway (маршрутизация запросов к разным моделям, унифицированный доступ, fallback, контроль доступа),
4) Cache (prompt cache, exact cache, semantic cache для снижения латентности и стоимости),
5) Complex logic (циклы, условное ветвление, write-действия),
6) Observability (метрики, логи, трейсы) и
7) Orchestration (LangChain, LlamaIndex и др., но автор советует начинать без них).
А какие вы порекомендуете свежие ресурсы? Если хотите добавить ее как ссылку в коммент, можно использовать код:
http://ssilka.ru
❤🔥15🌚2
Для инвесторов было необходимо посмотреть демографию клиентов в США. Для такой задачи можно использовать открытые источники, например данные US Census Bureau, которые доступны в Snowflake.
Задача простая, показать типового американца клиента нашего продукта. Последний опрос проводился в декабре 2023.
Сами по себе данные очень неудобные https://api.census.gov/data/2023/acs/acs5/variables.html, так что AI очень хорошо помог (Cursor, MCP - прям как я в недавнем видео записал).
Чтобы упросить логику, трансформации разложил по слоям в dbt.
Хотел поделиться примером демографии по медиане доходов в США:
То есть из примера видно, что средний доход в штатах это 75к в год (до налогов), где-то 4т в месяц на руки. А высокий доход это 150т+, около 8т на руки в месяц. Точно так же и в Канаде, только в Канадских долларах, но налоги будут выше и цены на все тоже будут выше.
А если посмотреть на зп Инженера данных, то старший специалист в США это 180-220к$, а в Канаде 160-180к CAD.
То есть зарплаты в ИТ они выше, чем “high income”.
Но у них есть недостаток, как правило все “high income” специалисты будут жить в дорогих городах, платить большую ипотеку или рент, платить кредит за машину(ы) и по факту, они будут такими же бедными.
Я бы сделал сейчас другие бакеты:
- High Income: >600к
- Upper Middle: 400-600к
- Middle: 250-400к
- Lower: <200к
Бюро переписи населения США публикует данные о американском населении и экономике.
Американское исследование сообществ (American Community Survey) этого агентства — это постоянно проводимый опрос, который предоставляет самые актуальные социальные, экономические, жилищные и демографические статистические данные. Ежегодно публикуются как однолетние, так и пятилетние оценки для различных уровней географических единиц, включая штаты, города, почтовые индексы и группы переписных участков. В отличие от Всеобщей переписи населения (Decennial Census), Американское исследование сообществ публикуется каждый год и рассылается по выборке адресов в США (~3,5 миллиона).
Задача простая, показать типового американца клиента нашего продукта. Последний опрос проводился в декабре 2023.
Сами по себе данные очень неудобные https://api.census.gov/data/2023/acs/acs5/variables.html, так что AI очень хорошо помог (Cursor, MCP - прям как я в недавнем видео записал).
Чтобы упросить логику, трансформации разложил по слоям в dbt.
Хотел поделиться примером демографии по медиане доходов в США:
CASE
WHEN median_household_income_dollars >= 150000 THEN 'High Income ($150k+)'
WHEN median_household_income_dollars >= 100000 THEN 'Upper Middle ($100k-$150k)'
WHEN median_household_income_dollars >= 75000 THEN 'Middle Income ($75k-$100k)'
WHEN median_household_income_dollars >= 50000 THEN 'Lower Middle ($50k-$75k)'
ELSE 'Lower Income (<$50k)'
То есть из примера видно, что средний доход в штатах это 75к в год (до налогов), где-то 4т в месяц на руки. А высокий доход это 150т+, около 8т на руки в месяц. Точно так же и в Канаде, только в Канадских долларах, но налоги будут выше и цены на все тоже будут выше.
А если посмотреть на зп Инженера данных, то старший специалист в США это 180-220к$, а в Канаде 160-180к CAD.
То есть зарплаты в ИТ они выше, чем “high income”.
Но у них есть недостаток, как правило все “high income” специалисты будут жить в дорогих городах, платить большую ипотеку или рент, платить кредит за машину(ы) и по факту, они будут такими же бедными.
Я бы сделал сейчас другие бакеты:
- High Income: >600к
- Upper Middle: 400-600к
- Middle: 250-400к
- Lower: <200к
Snowflake
US Census Bureau | Documentation
Delivers population, housing, economic, and geographic data for the United States.
❤🔥19💯7⚡3😭3 1
Очень интересный обзор М5 процессора https://youtu.be/Jh9pFp1oM7E?si=gwUcZVsxPhzA4TFk
Будет интересно с детьми посмотреть
PS согласно автору без использования AI, все сделано в Blender. Хотя у Blender есть MCP.
Будет интересно с детьми посмотреть
PS согласно автору без использования AI, все сделано в Blender. Хотя у Blender есть MCP.
YouTube
I shrunk down into an M5 chip
I shrunk myself down to explore the scale of transistors.
Watch the companion video from @EpicSpaceman
MKBHD Merch: http://shop.MKBHD.com
Playlist of MKBHD Intro music: https://goo.gl/B3AWV5
~
http://twitter.com/MKBHD
http://instagram.com/MKBHD
http:…
Watch the companion video from @EpicSpaceman
MKBHD Merch: http://shop.MKBHD.com
Playlist of MKBHD Intro music: https://goo.gl/B3AWV5
~
http://twitter.com/MKBHD
http://instagram.com/MKBHD
http:…
❤🔥12⚡3
Apache Spark выпустил релиз 4.1
Если 4.0 было страшно использовать, то 4.1 уже вполне.
Ключевые обновления
1. Spark Declarative Pipelines (SDP)
Новый декларативный фреймворк, который позволяет разработчикам определять наборы данных и запросы, а Spark автоматически управляет:
• Графом выполнения и порядком зависимостей
• Параллелизмом, контрольными точками и повторными попытками
• Поддержка Python, SQL и Spark Connect API
2. Real-Time Mode (RTM) в Structured Streaming
Первая официальная поддержка режима реального времени для непрерывной обработки с задержкой менее секунды:
• Задержка p99 в диапазоне единиц миллисекунд для задач без сохранения состояния
• Поддержка Kafka источников и приёмников
• Активируется простым изменением конфигурации без переписывания кода
3. Улучшения PySpark
Arrow-нативные UDF и UDTF:
• Новые декораторы @arrow_udf и @arrow_udtf для эффективного выполнения без накладных расходов на конвертацию Pandas
• Прямая работа с объектами PyArrow для векторизованной обработки
Python Worker Logging:
• Захват логов UDF через встроенную табличную функцию
• Упрощённая отладка Python функций
Filter Pushdown для Python Data Sources:
• Уменьшение перемещения данных за счёт обработки фильтров на уровне источника
4. Spark Connect
• Spark ML теперь GA для Python клиента
• Интеллектуальное кэширование моделей и управление памятью
• Сжатие планов выполнения protobuf с использованием zstd
• Потоковая передача результатов Arrow порциями
• Снято ограничение в 2 ГБ для локальных отношений
5. Улучшения SQL
SQL Scripting (GA):
• Включён по умолчанию
• Поддержка циклов, условных операторов и обработчиков ошибок
• Новый синтаксис CONTINUE HANDLER и многопеременное объявление DECLARE
VARIANT Data Type (GA):
• Стандартизированное хранение полуструктурированных данных (JSON)
• Shredding для оптимизации чтения:
▪ В 8 раз быстрее по сравнению со стандартным VARIANT
▪ В 30 раз быстрее по сравнению с JSON-строками
Recursive CTE:
• Поддержка рекурсивных общих табличных выражений для обхода иерархических структур
Новые аппроксимационные скетчи:
• KLL (для квантилей) и Theta скетчи для эффективных операций над множествами
Производительность
• Режим реального времени обеспечивает улучшение задержки на порядки величин
• VARIANT с shredding: 8-30x ускорение чтения (с компромиссом 20-50% замедления записи)
Если 4.0 было страшно использовать, то 4.1 уже вполне.
Ключевые обновления
1. Spark Declarative Pipelines (SDP)
Новый декларативный фреймворк, который позволяет разработчикам определять наборы данных и запросы, а Spark автоматически управляет:
• Графом выполнения и порядком зависимостей
• Параллелизмом, контрольными точками и повторными попытками
• Поддержка Python, SQL и Spark Connect API
2. Real-Time Mode (RTM) в Structured Streaming
Первая официальная поддержка режима реального времени для непрерывной обработки с задержкой менее секунды:
• Задержка p99 в диапазоне единиц миллисекунд для задач без сохранения состояния
• Поддержка Kafka источников и приёмников
• Активируется простым изменением конфигурации без переписывания кода
3. Улучшения PySpark
Arrow-нативные UDF и UDTF:
• Новые декораторы @arrow_udf и @arrow_udtf для эффективного выполнения без накладных расходов на конвертацию Pandas
• Прямая работа с объектами PyArrow для векторизованной обработки
Python Worker Logging:
• Захват логов UDF через встроенную табличную функцию
• Упрощённая отладка Python функций
Filter Pushdown для Python Data Sources:
• Уменьшение перемещения данных за счёт обработки фильтров на уровне источника
4. Spark Connect
• Spark ML теперь GA для Python клиента
• Интеллектуальное кэширование моделей и управление памятью
• Сжатие планов выполнения protobuf с использованием zstd
• Потоковая передача результатов Arrow порциями
• Снято ограничение в 2 ГБ для локальных отношений
5. Улучшения SQL
SQL Scripting (GA):
• Включён по умолчанию
• Поддержка циклов, условных операторов и обработчиков ошибок
• Новый синтаксис CONTINUE HANDLER и многопеременное объявление DECLARE
VARIANT Data Type (GA):
• Стандартизированное хранение полуструктурированных данных (JSON)
• Shredding для оптимизации чтения:
▪ В 8 раз быстрее по сравнению со стандартным VARIANT
▪ В 30 раз быстрее по сравнению с JSON-строками
Recursive CTE:
• Поддержка рекурсивных общих табличных выражений для обхода иерархических структур
Новые аппроксимационные скетчи:
• KLL (для квантилей) и Theta скетчи для эффективных операций над множествами
Производительность
• Режим реального времени обеспечивает улучшение задержки на порядки величин
• VARIANT с shredding: 8-30x ускорение чтения (с компромиссом 20-50% замедления записи)
1❤🔥42👨💻2
Статья "When AI writes almost all code, what happens to software engineering?" от The Pragmatic Engineer посвящена изменениям в профессии разработчика в связи с развитием AI для написания кода.
Основные темы статьи:
🔄 Переломный момент
Автор и многие опытные инженеры заметили, что новые модели AI (Opus 4.5, GPT-5.2, Gemini 3), выпущенные в ноябре-декабре 2025 года, достигли качественно нового уровня. Теперь AI может генерировать 90%+ кода, который раньше писали разработчики вручную.
📉 Плохие новости (The Bad)
• Снижение ценности специализации - знание конкретных языков программирования становится менее важным
• Прототипирование - теперь доступно не-техническим специалистам
• Конец узкой специализации - разделение на frontend/backend разработчиков может исчезнуть
• Рефакторинг и реализация задач - всё больше делегируется AI
Мой коммент: Несмотря на такой хороший список возможностей AI, очень мало кто этим пользуется, даже среди разработчиков. Многие люди не любят сильно напрягаться и изучать новое. С точки зрения специализации инженера данных, его ценность не в написании кода, а в создании аналитических систем.
📈 Хорошие новости (The Good)
• Инженеры важнее кодеров - навыки software engineering (архитектура, тестирование, код-ревью) ценятся больше
• Tech lead навыки - становятся базовыми требованиями
• Product-minded подход - разработчики должны лучше понимать продукт
• Системное мышление - важнее умение проектировать системы, чем писать код
Мой коммент: Так же и для аналитики и инженеринга данных - основы и фундаментальные знания важнее. Product-подход, ценность от выполнения задач, решения бизнес-проблем - все это как было важно, так и остается важным. Но теперь это может быть ваше основное преимущество.
⚠️ Неприятные последствия (The Ugly)
• Больше сгенерированного кода = больше проблем
• Слабые практики разработки начнут вредить быстрее
• Work-life balance может ухудшиться из-за повышенных ожиданий продуктивности
Мой коммент: Проблемы от vibe-coding — это очевидно, и некоторые уже меняют title в LinkedIn на "fixing your problems after vibe-coding". В токсичных компаниях реально могут требовать от вас больше результатов за меньшее время. Только вот в токсичных компаниях часто руководство не понимает ничего в AI, vibe-coding, и пока можно делать больше за меньшее количество времени. Но рано или поздно это изменится. Ведь можно отслеживать, сколько токенов было израсходовано, в какие репо коммитился код, и использовать AI как надзирателя. В любом случае, на данном этапе work-life баланс улучшился. Вопрос: надолго ли?
🤝 Слияние ролей
Границы между product managers и software engineers размываются - PM могут генерировать код, а инженеры берут на себя больше продуктовых решений.
Мой коммент: Я уже рассказывал про product-менеджера, который устал ждать отчет и навайбкодил целое решение с AI, дашбордом и парсингом данных опросов по продукту и стал чувствовать себя очень крутым и важным после этого. К сожалению, в production такое решение не пойдет, но он смог решить проблему сам от начала до конца без навыков и получил классный прототип с реальными инсайтами.
Основные темы статьи:
🔄 Переломный момент
Автор и многие опытные инженеры заметили, что новые модели AI (Opus 4.5, GPT-5.2, Gemini 3), выпущенные в ноябре-декабре 2025 года, достигли качественно нового уровня. Теперь AI может генерировать 90%+ кода, который раньше писали разработчики вручную.
📉 Плохие новости (The Bad)
• Снижение ценности специализации - знание конкретных языков программирования становится менее важным
• Прототипирование - теперь доступно не-техническим специалистам
• Конец узкой специализации - разделение на frontend/backend разработчиков может исчезнуть
• Рефакторинг и реализация задач - всё больше делегируется AI
Мой коммент: Несмотря на такой хороший список возможностей AI, очень мало кто этим пользуется, даже среди разработчиков. Многие люди не любят сильно напрягаться и изучать новое. С точки зрения специализации инженера данных, его ценность не в написании кода, а в создании аналитических систем.
📈 Хорошие новости (The Good)
• Инженеры важнее кодеров - навыки software engineering (архитектура, тестирование, код-ревью) ценятся больше
• Tech lead навыки - становятся базовыми требованиями
• Product-minded подход - разработчики должны лучше понимать продукт
• Системное мышление - важнее умение проектировать системы, чем писать код
Мой коммент: Так же и для аналитики и инженеринга данных - основы и фундаментальные знания важнее. Product-подход, ценность от выполнения задач, решения бизнес-проблем - все это как было важно, так и остается важным. Но теперь это может быть ваше основное преимущество.
⚠️ Неприятные последствия (The Ugly)
• Больше сгенерированного кода = больше проблем
• Слабые практики разработки начнут вредить быстрее
• Work-life balance может ухудшиться из-за повышенных ожиданий продуктивности
Мой коммент: Проблемы от vibe-coding — это очевидно, и некоторые уже меняют title в LinkedIn на "fixing your problems after vibe-coding". В токсичных компаниях реально могут требовать от вас больше результатов за меньшее время. Только вот в токсичных компаниях часто руководство не понимает ничего в AI, vibe-coding, и пока можно делать больше за меньшее количество времени. Но рано или поздно это изменится. Ведь можно отслеживать, сколько токенов было израсходовано, в какие репо коммитился код, и использовать AI как надзирателя. В любом случае, на данном этапе work-life баланс улучшился. Вопрос: надолго ли?
🤝 Слияние ролей
Границы между product managers и software engineers размываются - PM могут генерировать код, а инженеры берут на себя больше продуктовых решений.
Мой коммент: Я уже рассказывал про product-менеджера, который устал ждать отчет и навайбкодил целое решение с AI, дашбордом и парсингом данных опросов по продукту и стал чувствовать себя очень крутым и важным после этого. К сожалению, в production такое решение не пойдет, но он смог решить проблему сам от начала до конца без навыков и получил классный прототип с реальными инсайтами.
Pragmaticengineer
When AI writes almost all code, what happens to software engineering?
No longer a hypothetical question, this is a mega-trend set to hit the tech industry
1❤🔥16👨💻3🐳2
Хочу поделиться интересным опытом с AI. Опять же, на сам конечный результат это не влияет. Но влияет на его скорость и качество.
Возьмем пример Azure Data Factory. Это такой orchestration инструмент на Azure. По умолчанию там UI и drag&drop. Все очень просто, пока не нужно делать 100 pipelines.
Допустим, мы продвинутые инженеры (сеньоры, например), и мы хотим использовать best practices и engineering excellence, и добавили git версионирование, и следующий шаг будет сделать Infrastructure as a Code.
Первое, о чем мы подумаем - это Terraform или Azure Bicep. А может быть, вообще возьмем ADF SDK, и там есть Python SDK или C# (я, кстати, на нем и делал все в Microsoft внутри Visual Studio (не путать с VS Code)).
То есть мы думаем о привычном методе, о коде, который будет написан AI, но как будто человеком, и, в теории, другие человеки смогут его читать (без AI).
Хотя по факту никто его уже не будет читать без AI. И вообще уже не важно, что там C#, Python, Bicep, Terraform - главное, чтобы данные грузились.
Тут важно заметить, что это применимо к инжинирингу данных, и может быть совсем не применимо к другим областям.
Что я сделал?
Взял свой GitHub репозиторий с ADF, где все автоматически создано в ARM (Azure JSON формат), который не пишется человеком, и попросил AI сделать правила репозитория и начать создавать новые pipelines. (Аналог может быть Tableau Workbook XML или другие смежные программы с их файлами)
Таким образом, из моего backlog я просто взял и выкинул кучу задач про миграцию ADF на Bicep/Terraform и ускорил разработку, доработку и документацию в несколько раз.
То есть идея в том, что с AI я спустился на уровень ниже: вместо привычной абстракции в виде Terraform/Python я начал фигачить JSON ARM, который не human readable. И я полагаю, нам нужно не бояться уходить от традиционных методов и начинать исследовать новые возможности.
Скоро можно будет сразу на бинарном коде строить дашборды.
PS на картинке пример. Я еще собрал историю своих промотав за последние несколько месяцев и на их базе создал монстр правило как все должно работать и в него написано про доступный MCP сервер, чтобы сразу ходить и все проверять. Раньше я ленился и поэтому много надо было копировать руками и было много ошибок.
Дальше хочешь попробовать вставить duckdb куда-нибудь для оптимизации расходов, один ADF Runtime стоит 3к$ в месяц.
Возьмем пример Azure Data Factory. Это такой orchestration инструмент на Azure. По умолчанию там UI и drag&drop. Все очень просто, пока не нужно делать 100 pipelines.
Допустим, мы продвинутые инженеры (сеньоры, например), и мы хотим использовать best practices и engineering excellence, и добавили git версионирование, и следующий шаг будет сделать Infrastructure as a Code.
Первое, о чем мы подумаем - это Terraform или Azure Bicep. А может быть, вообще возьмем ADF SDK, и там есть Python SDK или C# (я, кстати, на нем и делал все в Microsoft внутри Visual Studio (не путать с VS Code)).
То есть мы думаем о привычном методе, о коде, который будет написан AI, но как будто человеком, и, в теории, другие человеки смогут его читать (без AI).
Хотя по факту никто его уже не будет читать без AI. И вообще уже не важно, что там C#, Python, Bicep, Terraform - главное, чтобы данные грузились.
Тут важно заметить, что это применимо к инжинирингу данных, и может быть совсем не применимо к другим областям.
Что я сделал?
Взял свой GitHub репозиторий с ADF, где все автоматически создано в ARM (Azure JSON формат), который не пишется человеком, и попросил AI сделать правила репозитория и начать создавать новые pipelines. (Аналог может быть Tableau Workbook XML или другие смежные программы с их файлами)
Таким образом, из моего backlog я просто взял и выкинул кучу задач про миграцию ADF на Bicep/Terraform и ускорил разработку, доработку и документацию в несколько раз.
То есть идея в том, что с AI я спустился на уровень ниже: вместо привычной абстракции в виде Terraform/Python я начал фигачить JSON ARM, который не human readable. И я полагаю, нам нужно не бояться уходить от традиционных методов и начинать исследовать новые возможности.
Скоро можно будет сразу на бинарном коде строить дашборды.
PS на картинке пример. Я еще собрал историю своих промотав за последние несколько месяцев и на их базе создал монстр правило как все должно работать и в него написано про доступный MCP сервер, чтобы сразу ходить и все проверять. Раньше я ленился и поэтому много надо было копировать руками и было много ошибок.
Дальше хочешь попробовать вставить duckdb куда-нибудь для оптимизации расходов, один ADF Runtime стоит 3к$ в месяц.
❤🔥27🙈6 2
Сегодня у меня на zoom call товарищ подключился со своего рабочего места…
Будущее наступило🚶♀️
PS хотите удивить на собеседовании? Теперь знаете, что делать. И глаз не видно, которые списывают из chatgpt))
Будущее наступило
PS хотите удивить на собеседовании? Теперь знаете, что делать. И глаз не видно, которые списывают из chatgpt))
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥27 20👨💻5🤷4
Основатель O’Reilly - Tim O’Reilly написал хорошую статью - AI and the Next Economy
Основные идеи статьи от АI:
🔄 Экономика как циркуляция
Автор утверждает, что экономика — это не просто производство, а производство + спрос. Спрос требует широко распределённой покупательной способности. Нельзя построить процветающее общество, оставив большинство людей "за бортом".
⚠️ Проблема нарративов об AGI
Многие нарративы об искусственном общем интеллекте (AGI) предполагают, что:
• Производительность вырастет
• ВВП увеличится
• Но при этом игнорируется вопрос: кто будет покупателями, если большинство людей потеряют работу и доход?
💔 Две версии будущего
1. Экономика открытий — ИИ может помочь решить глобальные проблемы (энергия, материалы, болезни), но:
• Открытия ≠ экономическая ценность
• Между открытием и широким внедрением — долгий путь
• Если контроль над технологиями сконцентрирован, получится "феодализм открытий"
2. Замена труда — ИИ заменит интеллектуальную работу, но:
• Если зарплаты исчезнут, кто будет покупать товары?
• Падение доли зарплат в экономике приведёт к нестабильности
🔑 Ключевые уроки истории
Автор приводит примеры:
• Генри Форд платил высокие зарплаты и сократил рабочие часы, создав массовый рынок для своих автомобилей
• Amazon и Google изначально создавали циркулирующую экономику (flywheel-эффект), но со временем стали извлекать ренту
• Децентрализация (ПК, интернет, open source) стимулирует инновации; централизация захватывает ценность
💡 Что нужно делать
AI-лабораториям:
• Измерять успех не только по возможностям моделей, но и по их распространению
• Создавать открытые интерфейсы, переносимость, совместимость
• Избегать искусственных барьеров
Компаниям:
• Не просто сокращать расходы через ИИ
• Инвестировать дивиденды от производительности в сотрудников (повышение зарплат, сокращение часов, переобучение)
Правительствам:
• Инвестировать в инфраструктуру и институты для новой экономики
• Рассмотреть переход от налогов на труд к налогам на прирост капитала
🌊 Главная метафора
Цитата из Уильяма Блейка: "Плодовитый перестанет быть плодовитым, если Пожиратель не будет, как море, принимать избыток его наслаждений".
Иными словами: производство должно потребляться, система должна циркулировать. ИИ-экономика нуждается в "маховике" (flywheel), который обеспечит широкое распространение благ, а не их концентрацию.
Основные идеи статьи от АI:
🔄 Экономика как циркуляция
Автор утверждает, что экономика — это не просто производство, а производство + спрос. Спрос требует широко распределённой покупательной способности. Нельзя построить процветающее общество, оставив большинство людей "за бортом".
⚠️ Проблема нарративов об AGI
Многие нарративы об искусственном общем интеллекте (AGI) предполагают, что:
• Производительность вырастет
• ВВП увеличится
• Но при этом игнорируется вопрос: кто будет покупателями, если большинство людей потеряют работу и доход?
💔 Две версии будущего
1. Экономика открытий — ИИ может помочь решить глобальные проблемы (энергия, материалы, болезни), но:
• Открытия ≠ экономическая ценность
• Между открытием и широким внедрением — долгий путь
• Если контроль над технологиями сконцентрирован, получится "феодализм открытий"
2. Замена труда — ИИ заменит интеллектуальную работу, но:
• Если зарплаты исчезнут, кто будет покупать товары?
• Падение доли зарплат в экономике приведёт к нестабильности
🔑 Ключевые уроки истории
Автор приводит примеры:
• Генри Форд платил высокие зарплаты и сократил рабочие часы, создав массовый рынок для своих автомобилей
• Amazon и Google изначально создавали циркулирующую экономику (flywheel-эффект), но со временем стали извлекать ренту
• Децентрализация (ПК, интернет, open source) стимулирует инновации; централизация захватывает ценность
💡 Что нужно делать
AI-лабораториям:
• Измерять успех не только по возможностям моделей, но и по их распространению
• Создавать открытые интерфейсы, переносимость, совместимость
• Избегать искусственных барьеров
Компаниям:
• Не просто сокращать расходы через ИИ
• Инвестировать дивиденды от производительности в сотрудников (повышение зарплат, сокращение часов, переобучение)
Правительствам:
• Инвестировать в инфраструктуру и институты для новой экономики
• Рассмотреть переход от налогов на труд к налогам на прирост капитала
🌊 Главная метафора
Цитата из Уильяма Блейка: "Плодовитый перестанет быть плодовитым, если Пожиратель не будет, как море, принимать избыток его наслаждений".
Иными словами: производство должно потребляться, система должна циркулировать. ИИ-экономика нуждается в "маховике" (flywheel), который обеспечит широкое распространение благ, а не их концентрацию.
O’Reilly Media
AI and the Next Economy
The narrative from the AI labs is dazzling: build AGI, unlock astonishing productivity, and watch GDP surge. It’s a compelling story, especially if you’re the
⚡47🦄13👨💻3
У AI есть интересный side эффект.
Как вы знаете, когда вы закрываете задачу, то вы получаете заряд дофамина. С AI в IDE вы можете закрыть в 5 раз больше задач в 3 раза быстрей. При условии, что нет токсичной среды с микроменджерами и медленным code review процессом и вы знаете, что делаете.
В каком-то смысле AI заменяет соц сети, только за это еще платят.
Как вы знаете, когда вы закрываете задачу, то вы получаете заряд дофамина. С AI в IDE вы можете закрыть в 5 раз больше задач в 3 раза быстрей. При условии, что нет токсичной среды с микроменджерами и медленным code review процессом и вы знаете, что делаете.
В каком-то смысле AI заменяет соц сети, только за это еще платят.
🤷20⚡8🙈5💯3 3🍌2🦄2
Запускаем год с запуска LLM
На вебинаре 15 января эксперты Cloud.ru расскажут, как точно рассчитать конфигурацию для запуска LLM и как настраивать параметры инференса, чтобы сэкономить, но не потерять в качестве.
Что еще интересного в программе:
🟢 из чего складывается потребление vRAM
🟢 как точно рассчитать нужную конфигурацию GPU
🟢 какие параметры LLM сильнее влияют на цену и производительность
🟢 как масштабировать модель и переводить ее в serverless-режим
А еще будет практика: запустим LLM в сервисе Evolution ML Inference, покажем оптимальные параметры, сравним разные конфигурации по цене и скорости работы.
Будет интересно всем, кто хочет избежать лишних трат на ML-инфраструктуру.
Зарегистрироваться
На вебинаре 15 января эксперты Cloud.ru расскажут, как точно рассчитать конфигурацию для запуска LLM и как настраивать параметры инференса, чтобы сэкономить, но не потерять в качестве.
Что еще интересного в программе:
А еще будет практика: запустим LLM в сервисе Evolution ML Inference, покажем оптимальные параметры, сравним разные конфигурации по цене и скорости работы.
Будет интересно всем, кто хочет избежать лишних трат на ML-инфраструктуру.
Зарегистрироваться
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥3🐳2
Forwarded from Data engineering events
📅 #Топ мировых конференций по Data Engineering на 2026
🧰 01/24 — Data Day Texas +AI — Austin, USA — ламповая комьюнити-конфа про инженерку данных: пайплайны, DWH/lakehouse, облака, практики прод-эксплуатации. Online только материалы/записи (если выложат).
🧭 03/09-11 — Gartner Data & Analytics Summit — Orlando, USA — data governance, architecture, operating model, “как продать и масштабировать платформу данных” в компании (полезно архитекторам/лидам). Online только материалы после (если доступны).
☁️ 04/22-24 — Google Cloud Next — Las Vegas, USA — паттерны построения data platforms в GCP: ingestion, lakehouse/warehouse, streaming, security & governance. Online только записи/хайлайты (если будут).
⚡ 05/19-20 — Current (Confluent) — London, UK — Kafka/streaming в проде: real-time ETL, schema evolution, governance, observability, event-driven архитектуры. Online только материалы/записи (если выложат).
🏛️ 05/06-08 — Data Innovation Summit — Stockholm, Sweden — современная дата-платформа: data products, governance, quality, architecture, enterprise-кейсы.
❄️ 06/01-04 — Snowflake Summit — San Francisco, USA — облачный DWH/платформа: performance, governance, sharing, ingestion/ELT, экосистема. Online только livestream ключевых + записи.
🧊 06/15-18 — Data + AI Summit (Databricks) — San Francisco, USA — lakehouse/lakehouse-ops: ingestion, streaming, governance, cost/perf, infra для MLOps/GenAI на платформе. Online только Watch On Demand.
🌀 08/31-09/02 — Airflow Summit — Austin, USA — оркестрация и ops: multi-tenant Airflow, reliability, backfills, sensors, best practices для data platform teams. Online только записи (если выложат).
🛠️ 09/15-18 — Coalesce (dbt Labs) — Las Vegas, USA — analytics engineering для прод-DWH: dbt, тесты/контракты, семантика, lineage, CI/CD. IRL + online.
🎡 09/23-24 — Big Data LDN — London, UK — большой зоопарк modern data stack: платформы, интеграции, governance/quality, архитектурные кейсы и вендоры. Online только материалы (если появятся).
🏗️ 11/30-12/04 — AWS re:Invent — Las Vegas, USA — инфраструктура под data platforms: storage/lakehouse, streaming, managed data services, security, FinOps. Online только on-demand + Best of re:Invent (virtual).
#y2026 #DE #data #conferences #dataengineering #modernDataStack #dataplatform #airflow #dbt #iceberg #kafka #streaming #dataquality #datagovernance #tobecontinued..
Сохраняй — и пусть 2026 будет годом крепких дата-платформ и бодрых релизов 🚀
* при подготовке использовались #LLM, тч делайте #фактчекинг😁 (и присылайте под пост или в директ;))
🧰 01/24 — Data Day Texas +AI — Austin, USA — ламповая комьюнити-конфа про инженерку данных: пайплайны, DWH/lakehouse, облака, практики прод-эксплуатации. Online только материалы/записи (если выложат).
🧭 03/09-11 — Gartner Data & Analytics Summit — Orlando, USA — data governance, architecture, operating model, “как продать и масштабировать платформу данных” в компании (полезно архитекторам/лидам). Online только материалы после (если доступны).
☁️ 04/22-24 — Google Cloud Next — Las Vegas, USA — паттерны построения data platforms в GCP: ingestion, lakehouse/warehouse, streaming, security & governance. Online только записи/хайлайты (если будут).
⚡ 05/19-20 — Current (Confluent) — London, UK — Kafka/streaming в проде: real-time ETL, schema evolution, governance, observability, event-driven архитектуры. Online только материалы/записи (если выложат).
🏛️ 05/06-08 — Data Innovation Summit — Stockholm, Sweden — современная дата-платформа: data products, governance, quality, architecture, enterprise-кейсы.
❄️ 06/01-04 — Snowflake Summit — San Francisco, USA — облачный DWH/платформа: performance, governance, sharing, ingestion/ELT, экосистема. Online только livestream ключевых + записи.
🧊 06/15-18 — Data + AI Summit (Databricks) — San Francisco, USA — lakehouse/lakehouse-ops: ingestion, streaming, governance, cost/perf, infra для MLOps/GenAI на платформе. Online только Watch On Demand.
🌀 08/31-09/02 — Airflow Summit — Austin, USA — оркестрация и ops: multi-tenant Airflow, reliability, backfills, sensors, best practices для data platform teams. Online только записи (если выложат).
🛠️ 09/15-18 — Coalesce (dbt Labs) — Las Vegas, USA — analytics engineering для прод-DWH: dbt, тесты/контракты, семантика, lineage, CI/CD. IRL + online.
🎡 09/23-24 — Big Data LDN — London, UK — большой зоопарк modern data stack: платформы, интеграции, governance/quality, архитектурные кейсы и вендоры. Online только материалы (если появятся).
🏗️ 11/30-12/04 — AWS re:Invent — Las Vegas, USA — инфраструктура под data platforms: storage/lakehouse, streaming, managed data services, security, FinOps. Online только on-demand + Best of re:Invent (virtual).
#y2026 #DE #data #conferences #dataengineering #modernDataStack #dataplatform #airflow #dbt #iceberg #kafka #streaming #dataquality #datagovernance #tobecontinued..
Сохраняй — и пусть 2026 будет годом крепких дата-платформ и бодрых релизов 🚀
* при подготовке использовались #LLM, тч делайте #фактчекинг
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥14😭6⚡4🌚1🦄1
Lance + DuckDB - очень интересный сетап для 2026 https://lancedb.com/blog/lance-x-duckdb-sql-retrieval-on-the-multimodal-lakehouse-format
https://lancedb.com/
Lance × DuckDB: SQL for Retrieval on the Multimodal Lakehouse Format
Use the Lance format as your lakehouse layer for retrieval, RAG and more, with the native Lance extension for DuckDB
❤🔥10🐳4