🐍 Python & Raspberry 🐍
8.21K subscribers
1.92K photos
125 videos
623 files
1.23K links
Python- Raspberry Pi-AI-IOT
ادمین : فرهاد ناصری زاده
@farhad_naserizadeh
@farhad3412

گروه پایتون
@Python_QA
تبادل
@mmtahmasbi
کانال مرتبط
@new_mathematical
@micropython_iot
@c_micro
اینستاگرام
http://Instagram.com/python_raspberry
Download Telegram
تبدیل PDF به DOC

@RASPBERRY_PYTHON
کوتاه کردن URL با پایتون

@RASPBERRY_PYTHON
Spelling Errors

@raspberry_python
LCM of two Numbers

@raspberry_python
Forwarded from Python4Finance
آشنایی با توزیع نرمال @Python4finance.pdf
615.1 KB
آشنایی با توزیع نرمال، و روش های نرمال سازی و استانداردسازی

در این اسلاید که مربوط به دوره آمار و احتمال علم داده است، مفهوم توزیع نرمال بررسی شده و با استفاده از پایتون، آزمون های نرمالیتی و روش های استانداردسازی و نرمال سازی بررسی می شود. مطالعه این اسلاید، به علاقه مندان آمار و نیز علاقه مندان یادگیری ماشین توصیه می شود.

#اسلاید
#آموزش
#توزیع_نرمال
#استاندارد_سازی
#نرمال_سازی

پایتون برای مالی در تلگرام
https://t.me/python4finance

پایتون برای مالی در بله
https://ble.ir/python4finance
Algorithm

Linear regression

Description

Finds a way to correlate each feature to the output to help predict future values.

Type

Regression


@raspberry_python
Algorithm

Logistic regression


Description

Extension of linear regression that’s used for classification tasks. The output variable 3is binary (e.g., only black or white) rather than continuous (e.g., an infinite list of potential colors)

Type

Classification

@raspberry_python
Algorithm

Decision tree

Description

Highly interpretable classification or regression model that splits data-feature values into branches at decision nodes (e.g., if a feature is a color, each possible color becomes a new branch) until a final decision output is made

Type

Regression
Classification

@raspberry_python
Algorithm

Naive Bayes

Description

The Bayesian method is a classification method that makes use of the Bayesian theorem. The theorem updates the prior knowledge of an event with the independent probability of each feature that can affect the event.

Type

Regression
Classification

@raspberry_python
Algorithm

Support vector machine

Description

Support Vector Machine, or SVM, is typically used for the classification task.
SVM algorithm finds a hyperplane that optimally divided the classes. It is best used with a non-linear solver.

Type

Regression (not very common)
Classification

@raspberry_python
Algorithm

Random forest

Description

The algorithm is built upon a decision tree to improve the accuracy drastically. Random forest generates many times simple decision trees and uses the ‘majority vote’ method to decide on which label to return. For the classification task, the final prediction will be the one with the most vote; while for the regression task, the average prediction of all the trees is the final prediction.

Type

Regression
Classification

@raspberry_python
Algorithm

AdaBoost

Description

Classification or regression technique that uses a multitude of models to come up with a decision but weighs them based on their accuracy in predicting the outcome

Type

Regression
Classification

@raspberry_python
Algorithm

Gradient-boosting trees

Description

Gradient-boosting trees is a state-of-the-art classification/regression technique. It is focusing on the error committed by the previous trees and tries to correct it.

Type

Regression
Classification

@raspberry_python
Unsupervised learning

In unsupervised learning, an algorithm explores input data without being given an explicit output variable (e.g., explores customer demographic data to identify patterns)

You can use it when you do not know how to classify the data, and you want the algorithm to find patterns and classify the data for you

@raspberry_python
Algorithm Name

K-means clustering

Description

Puts data into some groups (k) that each contains data with similar characteristics (as determined by the model, not in advance by humans)

Type

Clustering

@raspberry_python
Algorithm Name

Gaussian mixture model

Description

A generalization of k-means clustering that provides more flexibility in the size and shape of groups (clusters)

Type

Clustering

@raspberry_python
Algorithm Name

Hierarchical clustering

Description

Splits clusters along a hierarchical tree to form a classification system.
Can be used for Cluster loyalty-card customer

Type

Clustering

@raspberry_python
Algorithm Name

Recommender system

Description

Help to define the relevant data for making a recommendation.

Type

Clustering


@raspberry_python
Algorithm Name

PCA/T-SNE

Description

Mostly used to decrease the dimensionality of the data. The algorithms reduce the number of features to 3 or 4 vectors with the highest variances

Type

Dimension Reduction

@raspberry_python