Python академия
7.74K subscribers
2.31K photos
5 videos
267 links
Python академия. Учи Python быстро и легко. По всем вопросам @evgenycarter
Download Telegram
Работаем с котировками акций в Python

Библиотека yfinance предоставляет мощный и удобный инструмент для получения информации с ресурса Yahoo! finance в Python.

В сегодняшнем примере применим эту библиотеку чтобы узнать цену акций Майкрософт.

Тикер Макйрософт называется "MSFT", именно его необходимо вписать в методе поиска:

msft = yf.Ticker("MSFT")

Цена акции находится в поле ['regularMarketPrice']:

price = msft.info['regularMarketPrice']

Кроме этого yfinance предоставляет огромное количество такой информации о тикере как:

— Исторические данные рынка;
— Информация по дивидентам;
— Информация о фирме (адрес, количество работников, прибыль) и т. д.

Больше подробно об этой библиотеке можно посмотреть тут.

Подписывайтесь на канал 👉@pythonofff
👍2
Удаление URL-адресов

Для получения данных многие пользуются опросами. Но люди невнимательно заполняют поля, и порой в этих данных встречаются URL-адреса. Регулярное выражение, приведенное ниже, удаляет URL.

Вы можете использовать и любой другой regex-паттерн для поиска URL. Здесь найденные адреса заменяются пустой строкой.

Подписывайтесь на канал 👉@pythonofff
👍2
Работа с ChainMap из collections

СhainMap группирует несколько словарей или других сопоставлений вместе, чтобы создать единое представление.

Иногда нам нужно сгруппировать словари в один или же работать с множеством словарей как с одним, в этом случае вам поможет ChainMap.

Немного про особенности ChainMap:

— Представляет тот же интерфейс, что и словарь, но с дополнительными возможностями;
— Создает обновляемое представление;
— Видит внешние изменения во входных отображениях.

Подписывайтесь на канал 👉@pythonofff
👍2🔥1😐1
Перевод данных в нижний регистр

Весьма вероятно, что вам придется изменить регистр данных. Здесь мы переводим их в нижний.

Первые две строки кода заменяют табы и символы перевода строки на пустые строки. Третья строка ищет два и более пробелов при помощи регулярного выражения, а затем заменяет их на один пробел. Наконец, последняя строка обрезает данные с обоих концов, удаляя пробелы.

Подписывайтесь на канал 👉@pythonofff
👍1
Counter из collections

Counter — это подкласс словаря dict. Сама коллекция нужна для хранения элементов в виде словарных ключей, а их счетчики хранятся в виде значений словаря.

Для отсутствующих элементов вернется 0 вместо KeyError.

Немного о методах:

elements — возвращает итератор по элементам, каждый из которых повторяется столько раз, сколько его количество.

most_common — возвращает список из n наиболее распространенных элементов.

Подписывайтесь на канал 👉@pythonofff
👍1
Удаление эмодзи

Зачастую нам не нужны эмодзи в текстовых наборах данных. Мы можем их удалить всего одной строчкой кода. Сниппет, приведенный ниже, будет удалять эмодзи из датафрейма pandas столбец за столбцом. Этот сниппет можно найти на Stackoverflow.

Подписывайтесь на канал 👉@pythonofff
👍1
Слабые ссылки

Weakref позволяет создавать слабые ссылки к объектам, но не поддерживают объект живым, если не осталось больше сильных ссылок.

Слабые ссылки нужны для организации кэшей и хеш-таблиц из тяжелых объектов, потому что в долгоживущих программах может закончится память из-за большого хранения в кэшах.

Подписывайтесь на канал 👉@pythonofff
👍1
Удаление дублирующихся данных

Чтобы очистить данные, некоторые шаги нужно сделать обязательно. Один из таких шагов — удаление дубликатов. И тут не важно, идет речь о текстовых или числовых данных. Если у вас слишком много дубликатов, это увеличивает время обработки данных.

Подписывайтесь на канал 👉@pythonofff
👍2
Рисуем графики

Графическая библиотека plotly позволяет создавать интерактивные качественные графики в Python.

В сегодняшнем примере применим эту библиотеку чтобы построить простой линейный график.

Сначала нам нужен список с данными, которые мы хотим изобразить на графике. Это может быть, например, список или numpy массив:

data = [1, 1.3, 2.1, 4, 3.5, 7]

Далее метод fig = px.line(y=data) принимает наши данные и строит график в виде точек с координатами из массива и обьединяет их линиями.

Метод fig.show() откроет графическое окно с изображенным графиком.

Кроме этого plotly позволяет строить такие графики как:

— Точечные графики;
— Круговые диаграммы;
— Гистограммы;
— Тепловые карты;
— Пузырьковые диаграммы;
— И многие другие.

Больше подробно об этой библиотеке и способы ее применения можно посмотреть тут.

Подписывайтесь на канал 👉@pythonofff
Профилирование

Профилирование — это процесс, который помогает при работе с данными и их обработке. Пожалуй, одна из самых известных Python-библиотек для этого – Pandas. Данная библиотека является довольно понятной в использовании и благодаря ей можно быстро выполнять анализ данных. Кроме того, Pandas имеет встроенную функцию .plot() как часть класса DataFrame, что позволяет демонстрировать на графиках обрабатываемые данные.

Подписывайтесь на канал 👉@pythonofff
👍4
Аннотации типов

Python имеет динамическую типизацию и позволяет нам оперировать переменными разных типов, и иногда у нас бывают ошибки, связанные с некорректной передачей данных неверного типа.

В современных версиях 3.6+ добавилась поддержка аннотации типов переменных, полей класса,аргументов и возвращаемых значений.

Подписывайтесь на канал 👉@pythonofff
Генераторные фунции (generator functions)

Если предикатов фильтрации или обработчиков элементов списка много, то удобнее использовать генераторы. Они могут не дать прироста скорости, но помогут сэкономить память.

Генераторной фунцией в python называется функция, которая ведет себя как итератор. Для определения генераторной функции нужно использовать ключевое слово yield

Подписывайтесь на канал 👉@pythonofff
🔥1🤔1
Управление версиями Python

Инструмент pyenv позволяет легко переключаться между несколькими версиями Python. Он прост в использовании и следует лучшим традициям UNIX, где каждая утилита хорошо выполняет одну свою задачу.

Вкратце, основной функционал pyenv выглядит так:

— Позволяет изменять глобальную версию Python для каждого пользователя;
— Обеспечивает поддержку версий Python для каждого проекта;
— Позволяет переопределить версию Python с помощью переменной окружения;
— Выполняет поиск команд из нескольких версий Python одновременно.

Подписывайтесь на канал 👉@pythonofff
Генераторные выражения (generator expressions)

Попробуем использовать генераторные выражения (для получения среза будем использовать функцию islice из itertools, которая возвращает итератор по срезу)

Подписывайтесь на канал 👉@pythonofff
👍1
Обработка исключений

Исключения — это тип данных, который нужен для того, что бы сообщать нам об ошибках.

Существует базовое исключение BaseException от которого наследуются все остальные исключения.

В блоке try мы выполняем инструкцию, которая может породить исключение, а в блоке except мы ловим ошибки и делаем свои операции.

Стоит учесть, что мы можем делать бесконечное количество вложенных блоков.

Грамотным способом является вылавливать только те исключения, которые мы ожидаем.

Подписывайтесь на канал 👉@pythonofff
Имя функции не определено

В этом примере мы добавили лишнюю букву o при вызове функции — sayHelloo() вместо sayHello(). Это просто опечатка, однако она вызовет ошибку, потому что функции с таким именем не существует.

Итак, мы получили ошибку: NameError: name 'sayHelloo' is not defined. Подобные орфографические ошибки очень легко пропустить. Сообщение об ошибке обычно помогает исправить это.

Подписывайтесь на канал 👉@pythonofff
2👍1
Получаем метаданные из аудиофайла

Для извлечения метаданных из аудиофайлов, а также их редактирования есть очень удобный модуль mutagen. Модуль позволяет получить всю основную информацию об аудиофайле: длину, битрейт, исполнителя и так далее.

Модуль поддерживает форматы метаданных APEv2 и ID3v2, анализируя все кадры ID3v2.4 (посмотреть все нужные теги ID3v2 можно тут).

Подписывайтесь на канал 👉@pythonofff
🔥2👍1
В Москве заметили необычные баннеры с кодом от Академии Яндекса, в которых точно что-то спрятано, но в коде есть ошибка.
Пытаемся разобрать эту задачку, но пока не выходит. Может, у вас получится?

@BookPython
👍5🔥2🤓2
Каждая функция должна выполнять какое-то одно действие и делать это хорошо

Пишите короткие и простые функции, выполняющие одну задачу. Полезный прием: если в имени вашей функции появляется союз «и», лучше разделить такую функцию на две разных.

Подписывайтесь на канал 👉@pythonofff
👍3🔥1
Получаем и задаем лимит рекурсии

В Python не оптимизируется хвостовая рекурсия, из-за чего зачастую возникает RecursionError во время создания рекурсивных алгоритмов.

Но с помощью модуля sys можно посмотреть и даже изменить максимальную глубину рекурсии. Хотя делать это слегка опасно, так как каждый новый вызов занимает много памяти.

И вообще лучше стараться использовать не рекурсию, а обычные циклы, но это вы и так сами знаете.

Подписывайтесь на канал 👉@pythonofff
👍2