Python/ django
63.1K subscribers
2.29K photos
144 videos
48 files
3.03K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
🖥 Django 6.0 вышел - крупное обновление фреймворка

Вышел Django 6.0, и это одно из самых насыщенных обновлений за последнее время. Релиз добавляет функциональность, которую разработчики долго закрывали сторонними библиотеками или кастомными решениями.

Что нового и действительно важно:

Поддержка template partials из коробки
Теперь Django умеет частичные шаблоны на уровне фреймворка. Это упрощает структуру HTML, повышает переиспользуемость и делает шаблоны чище и понятнее без лишних include-хаков.

Нативный фреймворк для фоновых задач
В Django появился встроенный механизм для background tasks. Для многих проектов это означает, что Celery или RQ больше не обязательны для базовых задач — отложенные и асинхронные операции можно реализовать стандартными средствами.

Встроенная система Content Security Policy (CSP)
Django 6.0 получил полноценную поддержку CSP. Это серьёзный шаг в сторону безопасности по умолчанию и защита от XSS и других атак без внешних middleware.

Современный email API с нормальной Unicode-поддержкой
Работа с email стала более предсказуемой и дружелюбной к Unicode, что особенно важно для международных проектов и сложных шаблонов писем.

Жизненный цикл версий
Django 5.2 больше не имеет mainstream-поддержки. Разработчикам рекомендуется переходить на 6.0, чтобы получать новые возможности, обновления безопасности и улучшения платформы.

Django продолжает двигаться в сторону «batteries included», но делает это аккуратно и прагматично. Django 6.0 снижает зависимость от внешних библиотек, усиливает безопасность и делает повседневную разработку заметно удобнее.

Это релиз, который стоит внимательно изучить и запланировать апгрейд.

https://www.djangoproject.com/weblog/2025/dec/03/django-60-released/

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2515🔥7😁1
📝 Редактирование PDF с помощью ИИ 🚀

Nano PDF - это CLI инструмент для редактирования PDF-документов с использованием естественных языковых запросов. Он позволяет изменять слайды, добавлять новые и сохранять текстовый слой благодаря OCR. Инструмент использует модель Gemini 3 Pro Image для быстрого и качественного редактирования.

🚀 Основные моменты:
- Редактирование слайдов по текстовым командам
- Генерация новых слайдов в стиле существующих
- Поддержка многопоточной обработки
- Сохранение текстового слоя PDF

📌 GitHub: https://github.com/gavrielc/Nano-PDF

#python

@pythonl
🔥6😢32
🌍🤖 GigaWorld-0: Модели мира

GigaWorld-0 - это унифицированная платформа для обучения Vision-Language-Action, использующая генерацию видео и 3D моделирование. Она обеспечивает создание разнообразных и реалистичных последовательностей, что делает её мощным инструментом для разработки эмбодированных ИИ.

🚀Основные моменты:
- Интеграция видео и 3D генерации для физической реалистичности.
- Поддержка текстовых подсказок для генерации видео.
- Модели доступны на Hugging Face для быстрого старта.
- Открытый исходный код с лицензией Apache 2.0.

📌 GitHub: https://github.com/open-gigaai/giga-world-0

#python
6👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
💀➡️ Большинство кодеров не знают про это ускорение в Python

Одна из самых недооценённых оптимизаций в Python — вынесение повторяющихся вычислений в локальные переменные.
Причина проста: доступ к локальной переменной в CPython *в 2–3 раза быстрее*, чем к глобальной или атрибуту модуля.

Особенно важно в циклах и горячих участках кода.


import math

# Медленнее: math.sqrt вызывается через глобальное пространство имён
def slow(nums):
return [math.sqrt(x) for x in nums]

# Быстрее: ссылка на функцию закэширована в локальной переменной
def fast(nums):
sqrt = math.sqrt
return [sqrt(x) for x in nums]

# Ещё пример: длину списка лучше сохранить локально
def sum_fast(nums):
total = 0
ln = len(nums) # локальная ссылка быстрее
for i in range(ln):
total += nums[i]
return total
👍96🔥4🤩1
Выходим на новый уровень для удобной работы над ИТ-продуктами

Свежий релиз SourceCraft — когда AI, Git и безопасность работают синхронно.
Специальная ИИ-система проверяет безопасность кода и оформляет найденные уязвимости в карточки прямо на платформе.

Для команд:
— поддержка Gitlab CI/CD YAML, удобные инструменты релизов и web-интерфейс для решения конфликтов в PR.

Для безопасности:

— дашборд уязвимостей по всем репозиториям, страница Code Scanning для SAST, rescan и список библиотек с уязвимостями в SCA.
— пройдена оценка соответствия требованиям ФЗ-152, PCI DSS, ГОСТ 57580.

Обновлён UI для CI/CD и появились Telegram-уведомления. Работаем дальше

Подробнее в канале
4👍3🔥3😁2
Forwarded from Machinelearning
📌 Андрей Карпаты написал ИИ-пайплайн для проверки IT-прогнозов десятилетней давности.

Андрей опубликовал разбор своего нового пет-проекта. Он создал систему, которая анализирует архивные треды Hacker News и с помощью LLM проверяет, сбылись ли предсказания пользователей спустя 10 лет.

Проект использует так называемые «послезнание» (hindsight), чтобы сравнивать старые комментарии с реальностью, выявлять визионеров и находить самые громкие ошибки.

Технически решение представляет собой пайплайн, который собирает данные через API Algolia и обрабатывает их с помощью структурированного промпта.

Тестовый прогон на 930 обсуждениях (месячный архив статей Hacker News) занял около часа и обошелся всего в 58 долларов.

На выходе система генерирует статический сайт с «Залом славы» аналитиков и рейтингом точность прогнозов.

Исходный вайб-код проекта, по традиции - в открытом доступе.


@ai_machinelearning_big_data

#AI #ML #LLM #Tutorial #Karpaty
Please open Telegram to view this post
VIEW IN TELEGRAM
5😢2👍1🔥1