🧠 Инструменты для искусственного интеллекта
Собрание полезных AI-инструментов и ресурсов для разработчиков, исследователей и энтузиастов. Участвуйте в развитии сообщества, добавляя новые сервисы и улучшая коллекцию.
🚀 Основные моменты:
- Широкий выбор AI-инструментов по различным категориям.
- Открытое сообщество для совместной работы и улучшения.
- Возможность вносить свой вклад через Pull Requests.
📌 GitHub: https://github.com/Hyraze/collective-ai-tools
#python
Собрание полезных AI-инструментов и ресурсов для разработчиков, исследователей и энтузиастов. Участвуйте в развитии сообщества, добавляя новые сервисы и улучшая коллекцию.
🚀 Основные моменты:
- Широкий выбор AI-инструментов по различным категориям.
- Открытое сообщество для совместной работы и улучшения.
- Возможность вносить свой вклад через Pull Requests.
📌 GitHub: https://github.com/Hyraze/collective-ai-tools
#python
GitHub
GitHub - Hyraze/collective-ai-tools: AI tools platform with 800+ curated tools, built-in workspace tools, and job board for developers…
AI tools platform with 800+ curated tools, built-in workspace tools, and job board for developers and researchers. - Hyraze/collective-ai-tools
❤5👍1🔥1
Wink AI Challenge — хакатон на стыке IT и кино. Участников ждут задачи, которые ускорят производство фильмов и сериалов за счёт прикладных AI-решений. Призовой фонд соревнования — 1 125 000 рублей.
Регистрация до 31 октября: https://cnrlink.com/winkaichallengepydjango
Приглашаем на первый в России хакатон, посвящённый применению ИИ в кинопроизводстве, ML-инженеров, backend- и frontend-разработчиков, специалистов в DevOps, MLOps, а также инженеров в сфере мультимедиа.
Вы сможете:
🔸 Разработать ML-модель, которую оценят и будут использовать продюсеры популярных российских фильмов и сериалов.
🔸 Решить кейсы, основанные на реальных задачах, с которыми продюсеры сталкиваются каждый день.
🔸 Использовать настоящие сценарии и видеоматериалы для анализа текстов, извлечения сущностей и генерации структуры съёмок.
🔸 Попрактиковаться в применении NLP, NER и мультимодальных данных в задачах кинопроизводства.
Регистрируйтесь на Wink AI Challenge, чтобы разработать ИИ-ассистента, который станет частью производства фильмов и сериалов: https://cnrlink.com/winkaichallengepydjango
Регистрация до 31 октября: https://cnrlink.com/winkaichallengepydjango
Приглашаем на первый в России хакатон, посвящённый применению ИИ в кинопроизводстве, ML-инженеров, backend- и frontend-разработчиков, специалистов в DevOps, MLOps, а также инженеров в сфере мультимедиа.
Вы сможете:
🔸 Разработать ML-модель, которую оценят и будут использовать продюсеры популярных российских фильмов и сериалов.
🔸 Решить кейсы, основанные на реальных задачах, с которыми продюсеры сталкиваются каждый день.
🔸 Использовать настоящие сценарии и видеоматериалы для анализа текстов, извлечения сущностей и генерации структуры съёмок.
🔸 Попрактиковаться в применении NLP, NER и мультимодальных данных в задачах кинопроизводства.
Регистрируйтесь на Wink AI Challenge, чтобы разработать ИИ-ассистента, который станет частью производства фильмов и сериалов: https://cnrlink.com/winkaichallengepydjango
❤4
🛠️ Улучшаем отладку с пользовательскими типами
Этот репозиторий помогает отображать пользовательские типы и контейнеры в отладчике LLDB, делая их более понятными. С помощью кастомных функций и синтетических провайдеров вы сможете легко видеть значения ваших объектов и контейнеров.
🚀Основные моменты:
- Поддержка пользовательских типов и контейнеров в LLDB.
- Использование Python для настройки отображения.
- Примеры для классов и контейнеров, таких как
- Удобное взаимодействие с отладчиком через
📌 GitHub: https://github.com/codeinred/lldb_user_types
#python
Этот репозиторий помогает отображать пользовательские типы и контейнеры в отладчике LLDB, делая их более понятными. С помощью кастомных функций и синтетических провайдеров вы сможете легко видеть значения ваших объектов и контейнеров.
🚀Основные моменты:
- Поддержка пользовательских типов и контейнеров в LLDB.
- Использование Python для настройки отображения.
- Примеры для классов и контейнеров, таких как
example::date
и example::span
.- Удобное взаимодействие с отладчиком через
.lldbinit
.📌 GitHub: https://github.com/codeinred/lldb_user_types
#python
❤6👍2🔥2
Media is too big
VIEW IN TELEGRAM
МТС приглашает всех, кто пишет на С++, Go, Python, JS, Java, C# и других языках, на True Tech Champ — всероссийский чемпионат по программированию. Соревнование будет проходить в двух треках.
Трек 1. Алгоритмический. Индивидуальный зачет [призовой фонд 2 750 000 рублей]
Реши задачи, которые помогут прокачаться в работе с алгоритмами и структурами данных. Похожие задания встречаются на собеседованиях в МТС и других крупных компаниях. До 240 лучших участников попадут в финал и сразятся в лайв-кодинге.
Трек 2. Программирование роботов. Командный формат [призовой фонд 7 500 000 рублей]
Проведи робота по виртуальному лабиринту, затем управляй им дистанционно на офлайн-полигоне, а в финале — пройди испытания на реальной площадке и выбей соперников с платформы.
🎁 Организаторы отправят командам финалистов по одному роботу Waveshare Cobra Flex для кастомизации. После соревнований они останутся у участников в качестве подарка.
📍 Зрелищный шоу-финал с ИИ-технологиями, кодерскими челленджами и выступлениями международных и российских спикеров пройдет 21 ноября в МТС Live Холл.
Стоит участвовать, чтобы:
— Освежить знания и прокачать новые навыки.
— Заявить о себе на всю страну, получить карьерный буст и шанс лично пообщаться с HR-специалистами МТС.
⏰ Регистрация участников до 20 октября на сайте.
Трек 1. Алгоритмический. Индивидуальный зачет [призовой фонд 2 750 000 рублей]
Реши задачи, которые помогут прокачаться в работе с алгоритмами и структурами данных. Похожие задания встречаются на собеседованиях в МТС и других крупных компаниях. До 240 лучших участников попадут в финал и сразятся в лайв-кодинге.
Трек 2. Программирование роботов. Командный формат [призовой фонд 7 500 000 рублей]
Проведи робота по виртуальному лабиринту, затем управляй им дистанционно на офлайн-полигоне, а в финале — пройди испытания на реальной площадке и выбей соперников с платформы.
🎁 Организаторы отправят командам финалистов по одному роботу Waveshare Cobra Flex для кастомизации. После соревнований они останутся у участников в качестве подарка.
📍 Зрелищный шоу-финал с ИИ-технологиями, кодерскими челленджами и выступлениями международных и российских спикеров пройдет 21 ноября в МТС Live Холл.
Стоит участвовать, чтобы:
— Освежить знания и прокачать новые навыки.
— Заявить о себе на всю страну, получить карьерный буст и шанс лично пообщаться с HR-специалистами МТС.
⏰ Регистрация участников до 20 октября на сайте.
❤9👍4🔥3😢3😁1
1️⃣0️⃣0️⃣0️⃣ БЕСПЛАТНЫХ приложений, которые можно развернуть прямо у себя на сервере. На GitHub нашли настоящую сокровищницу!
50+ категорий: от аналитики и бронирований до автоматизации рутины и чтения книг.
Внутри — сотни инструментов под любые задачи: файлообменники, парсеры, сервисы для мониторинга и даже решения для ресторанов и отелей.
Всё работает локально — данные остаются только у вас, ничего не уходит разработчикам или в сеть.
https://github.com/awesome-selfhosted/awesome-selfhosted
@pythonl
50+ категорий: от аналитики и бронирований до автоматизации рутины и чтения книг.
Внутри — сотни инструментов под любые задачи: файлообменники, парсеры, сервисы для мониторинга и даже решения для ресторанов и отелей.
Всё работает локально — данные остаются только у вас, ничего не уходит разработчикам или в сеть.
https://github.com/awesome-selfhosted/awesome-selfhosted
@pythonl
❤9👍5🔥4
🐍 Как ускорить ML-эксперименты на Python без настройки железа
Вы пишете на Python, используете PyTorch, TensorFlow или JAX — и тратите часы на установку драйверов, CUDA и зависимостей, вместо того чтобы просто запустить обучение.
В immers.cloud мы убрали эту рутину:
💰 Посекундная тарификация: тарифы от 23 руб/час, платите только за время, когда сервер реально работает.
⚡️ Быстрый старт: нужный сервер поднимается за пару минут.
📈 Гибкость и масштабируемость: 13 моделей видеокарт на выбор, от RTX 3090 до флагманских Н200.
🔧 Удобство: готовые образы для ваших задач, чтобы не тратить время на настройку.
А если нужно прерваться — можно просто заморозить ВМ с помощью функции Shelve: данные сохранятся, а платить за простои не придется.⠀
🔗 Начните сейчас и получите +20 % к первому пополнению!
Вы пишете на Python, используете PyTorch, TensorFlow или JAX — и тратите часы на установку драйверов, CUDA и зависимостей, вместо того чтобы просто запустить обучение.
В immers.cloud мы убрали эту рутину:
💰 Посекундная тарификация: тарифы от 23 руб/час, платите только за время, когда сервер реально работает.
⚡️ Быстрый старт: нужный сервер поднимается за пару минут.
📈 Гибкость и масштабируемость: 13 моделей видеокарт на выбор, от RTX 3090 до флагманских Н200.
🔧 Удобство: готовые образы для ваших задач, чтобы не тратить время на настройку.
А если нужно прерваться — можно просто заморозить ВМ с помощью функции Shelve: данные сохранятся, а платить за простои не придется.⠀
🔗 Начните сейчас и получите +20 % к первому пополнению!
❤6🔥4🤩3
🎙️ VoxCPM: Революционный TTS для естественного синтеза речи
VoxCPM — это инновационная система синтеза речи без токенизации, обеспечивающая контекстуально осознанное создание речи и высококачественное клонирование голоса. Она использует диффузионную архитектуру для генерации непрерывных звуковых представлений, что позволяет достигать высокой выразительности и стабильности.
🚀 Основные моменты:
- Контекстуально осознанная генерация речи с естественным звучанием.
- Точное клонирование голоса с минимальным количеством образцов.
- Высокая эффективность синтеза, поддержка потоковой передачи.
📌 GitHub: https://github.com/OpenBMB/VoxCPM
@pythonl
VoxCPM — это инновационная система синтеза речи без токенизации, обеспечивающая контекстуально осознанное создание речи и высококачественное клонирование голоса. Она использует диффузионную архитектуру для генерации непрерывных звуковых представлений, что позволяет достигать высокой выразительности и стабильности.
🚀 Основные моменты:
- Контекстуально осознанная генерация речи с естественным звучанием.
- Точное клонирование голоса с минимальным количеством образцов.
- Высокая эффективность синтеза, поддержка потоковой передачи.
📌 GitHub: https://github.com/OpenBMB/VoxCPM
@pythonl
🔥4❤1👍1
Media is too big
VIEW IN TELEGRAM
Python 3.14 вышел 7 октября 2025 года. Это новый стабильный релиз, который содержит как изменения в самом языке, так и улучшения в реализации, стандартной библиотеке, отладке и взаимодействии с многопоточностью.
Ниже - обзор ключевых нововведений, их смысла, применимости и возможных подводных камней.
- Отложенная (ленивая) оценка аннотаций - теперь аннотации не вычисляются сразу, что уменьшает накладные расходы.
- Поддержка нескольких интерпретаторов в рамках одного процесса через новый модуль.
- Новый синтаксис шаблонных строк (t-strings), который даёт больше контроля над статической и интерполированной частью.
- Более информативные сообщения об ошибках (например, подсказки для опечаток в ключевых словах).
- Поддержка формата сжатия Zstandard в стандартной библиотеке.
- Улучшенные возможности для отладки и профилирования, в том числе подключение к живому процессу без остановки.
- Улучшения в
asyncio
— команды для визуализации и диагностики задач, стеков ожидания и зависимостей. - Уменьшение пауз сборщика мусора (gc) через инкрементальный сбор.
- Подсветка синтаксиса и автодополнение модулей в интерактивном режиме (REPL) по умолчанию.
Ленивые аннотации - deferred evaluation of annotations
Раньше аннотации (для типов, документации, подсказок) могли вызывать вычисления прямо при определении функции или класса. Теперь они хранятся в виде «ленивых» структур и вычисляются по надобности. Это снижает накладные расходы на загрузку кода, особенно если аннотации сложные или содержат много forward-ссылок.
Есть модуль
annotationlib
, который позволяет исследовать аннотации программно и выбирать формат их получения — строки, объекты или отложенные ссылки.Когда это особенно помогает:
- большие фреймворки, генерация кода, ORM, библиотеки с множеством аннотаций;
- ускорение импорта при старте приложений;
- уменьшение накладных расходов при работе с типами.
Что проверить при миграции:
- код, использующий
__annotations__
напрямую, может требовать адаптации; - убедитесь, что сторонние библиотеки, работающие с аннотациями, поддерживают новый формат.
Несколько интерпретаторов (subinterpreters)
Теперь в Python можно запускать несколько независимых интерпретаторов внутри одного процесса (модуль `concurrent.interpreters`).
Преимущества:
- изоляция между интерпретаторами (отдельная память, отдельный GIL);
- параллелизм на многоядерных системах;
- меньше накладных расходов, чем при использовании
multiprocessing
. Ограничения:
- не все C-расширения поддерживают мультиинтерпретацию;
- коммуникация между интерпретаторами требует явных каналов (очереди, сообщения).
Это даёт реальную возможность распараллеливания CPU-задач без запуска отдельных процессов.
Template string literals (t-strings)
Новое синтаксическое средство — префикс
t
перед строкой, аналогично f'...'
. Результат — объект
Template
, который хранит текст и вставки по отдельности.
variety = 'Stilton'
template = t'Try some {variety} cheese!'
- Подробности
- Скачать
- Видеообзор
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤14🔥6👍5