🎧 MiMo Audio: Инновации в аудио языковых моделях
MiMo Audio предлагает передовые аудио языковые модели, способные к обучению с минимальным количеством примеров. С использованием более 100 миллионов часов данных, модель демонстрирует выдающиеся результаты в задачах распознавания речи и аудиоанализа, а также в генерации речи. MiMo-Audio-7B-Base устанавливает новые стандарты в открытых моделях.
🚀Основные моменты:
- Поддержка нескольких аудио задач с минимальным обучением.
- Высокая производительность в распознавании речи и аудио понимании.
- Генерация реалистичной речи для различных форматов.
- Открытый доступ к моделям через Hugging Face.
📌 GitHub: https://github.com/XiaomiMiMo/MiMo-Audio
@pythonl
MiMo Audio предлагает передовые аудио языковые модели, способные к обучению с минимальным количеством примеров. С использованием более 100 миллионов часов данных, модель демонстрирует выдающиеся результаты в задачах распознавания речи и аудиоанализа, а также в генерации речи. MiMo-Audio-7B-Base устанавливает новые стандарты в открытых моделях.
🚀Основные моменты:
- Поддержка нескольких аудио задач с минимальным обучением.
- Высокая производительность в распознавании речи и аудио понимании.
- Генерация реалистичной речи для различных форматов.
- Открытый доступ к моделям через Hugging Face.
📌 GitHub: https://github.com/XiaomiMiMo/MiMo-Audio
@pythonl
❤10🔥7👍4
⚡ Наглядное сравнение скорости нового Python 3.14 с предыдущей версией
Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.
Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.
Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.
Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.
Раньше поэтому многопоточность в Python фактически не работала.
🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.
Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.
🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.
📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.
💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.
Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading
@pythonl
Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.
Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.
Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.
Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.
Раньше поэтому многопоточность в Python фактически не работала.
🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.
Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.
🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.
📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.
💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.
Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading
@pythonl
👍27❤12🔥7
🌐 DeepMind представила URL Context — теперь можно извлекать данные с любой веб-страницы, PDF или картинки просто по ссылке!
⚡ Что умеет:
- Подтягивает данные с до 20 URL за один запрос
- Никакой настройки — просто вставляешь ссылки в промпт
- Оплата только за токены, без доп. стоимости за инструмент
💡 Возможности:
▸ Вытаскивать цены, имена, ключевые факты из статей
▸ Сравнивать PDF, отчёты или статьи
▸ Генерировать резюме, посты и документы на основе разных источников
▸ Анализировать GitHub-репозитории и техдоки
👉 URL Context превращает LLM в универсальный инструмент для работы с реальными данными в сети.
https://ai.google.dev/gemini-api/docs/url-context?hl=ru
⚡ Что умеет:
- Подтягивает данные с до 20 URL за один запрос
- Никакой настройки — просто вставляешь ссылки в промпт
- Оплата только за токены, без доп. стоимости за инструмент
💡 Возможности:
▸ Вытаскивать цены, имена, ключевые факты из статей
▸ Сравнивать PDF, отчёты или статьи
▸ Генерировать резюме, посты и документы на основе разных источников
▸ Анализировать GitHub-репозитории и техдоки
👉 URL Context превращает LLM в универсальный инструмент для работы с реальными данными в сети.
https://ai.google.dev/gemini-api/docs/url-context?hl=ru
❤13👍5🔥4
💾🎉 copyparty - ваш файловый сервер на любом устройстве
Copyparty позволяет легко превратить любое устройство в файловый сервер с поддержкой возобновляемых загрузок и скачиваний через веб-браузер. Работает на Python и поддерживает различные протоколы, включая HTTP, WebDAV и FTP.
🚀Основные моменты:
- Поддержка множества протоколов для доступа к файлам.
- Удобный интерфейс для загрузки и управления файлами.
- Возможность создания временных ссылок для обмена файлами.
- Поддержка мобильных приложений для Android и iOS.
📌 GitHub: https://github.com/9001/copyparty
#python
Copyparty позволяет легко превратить любое устройство в файловый сервер с поддержкой возобновляемых загрузок и скачиваний через веб-браузер. Работает на Python и поддерживает различные протоколы, включая HTTP, WebDAV и FTP.
🚀Основные моменты:
- Поддержка множества протоколов для доступа к файлам.
- Удобный интерфейс для загрузки и управления файлами.
- Возможность создания временных ссылок для обмена файлами.
- Поддержка мобильных приложений для Android и iOS.
📌 GitHub: https://github.com/9001/copyparty
#python
❤17👍1🔥1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 PyApp: Упрощение создания Python приложений
PyApp — это обертка для Python-приложений, позволяющая им самостоятельно загружаться во время выполнения. Она упрощает создание автономных бинарных файлов для различных платформ и предлагает управление командами, включая автоматические обновления.
🚀 Основные моменты:
- Создание самостоятельных бинарников для всех платформ
- Управляющие команды для функциональности, включая обновления
- Конфигурируемое поведение на этапе выполнения
📌 GitHub: https://github.com/ofek/pyapp
@pythonl
#python
PyApp — это обертка для Python-приложений, позволяющая им самостоятельно загружаться во время выполнения. Она упрощает создание автономных бинарных файлов для различных платформ и предлагает управление командами, включая автоматические обновления.
🚀 Основные моменты:
- Создание самостоятельных бинарников для всех платформ
- Управляющие команды для функциональности, включая обновления
- Конфигурируемое поведение на этапе выполнения
📌 GitHub: https://github.com/ofek/pyapp
@pythonl
#python
❤10👍6🤩3
Как построить карьеру в машинном обучении, если вы уже знаете Python
Вы работаете с Python — пишете скрипты, анализируете данные или автоматизируете задачи?
Сделайте следующий шаг и примените эти навыки в машинном обучении.
ML — одна из самых быстрорастущих областей IT с высокими зарплатами и сложными задачами. На вебинаре от Кристины Желтовой, директора по разработке моделей в Газпромбанке, вы получите пошаговый план, как стать ML-инженером.
В ходе вебинара разберём:
🟠 Из каких сфер чаще всего приходят в профессию ML-инженера;
🟠 Какие задачи решают специалисты в этой области;
🟠 Какие навыки, технологии и инструменты потребуются для старта в профессии;
🟠 Как перейти от теории к работе с реальными моделями и решению проблем бизнеса.
🕗 Встречаемся 15 октября в 19:00 МСК
💬 Обязательно ждем вас в лайве — вы сможете напрямую задать свои вопросы Кристине Желтовой и выстроить личный план перехода в профессию ML-инженера!
😶 Зарегистрироваться на бесплатный вебинар
Вы работаете с Python — пишете скрипты, анализируете данные или автоматизируете задачи?
Сделайте следующий шаг и примените эти навыки в машинном обучении.
ML — одна из самых быстрорастущих областей IT с высокими зарплатами и сложными задачами. На вебинаре от Кристины Желтовой, директора по разработке моделей в Газпромбанке, вы получите пошаговый план, как стать ML-инженером.
В ходе вебинара разберём:
🕗 Встречаемся 15 октября в 19:00 МСК
💬 Обязательно ждем вас в лайве — вы сможете напрямую задать свои вопросы Кристине Желтовой и выстроить личный план перехода в профессию ML-инженера!
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
This media is not supported in your browser
VIEW IN TELEGRAM
Забудь про грядки и полив — теперь ферма работает на Python. Ты управляешь роботами, автоматизируешь процессы и наблюдаешь, как код превращается в урожай.
Вместо мотыги - код, вместо удобрений - алгоритмы.
Это не симулятор фермера, а тренажёр программиста с юмором и логикой.
- Всё управление через код - роботы выполняют твои Python-команды;
- Обучение встроено в геймплей — осваиваешь основы без нудных туториалов;
- Без уровней и доната - ферма растёт вместе с твоими навыками;
- Есть русский язык и IntelliSense, можно писать даже из VS Code;
У игры уже 95% положительных отзывов в Steam.
Игра превращает обучение Python в чистое удовольствие - просто запускаешь и начинаешь “программировать урожай”.
👉 Играть
Please open Telegram to view this post
VIEW IN TELEGRAM
❤40🔥18👍10🤩3
This media is not supported in your browser
VIEW IN TELEGRAM
Это огромное обновление: раньше, даже если вы писали многопоточный код, Python выполнял только один поток за раз, и вы не получали прироста производительности.
Теперь же Python способен реально выполнять потоки параллельно.
И библиотека uv уже полностью поддерживает эту возможность!
Посмотрите сравнение скорости на прикрепленном видео.
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤16👍8🔥6
This media is not supported in your browser
VIEW IN TELEGRAM
Python или не Python? Вот в чём вопрос… на обсуждение в формате круглого стола на Python-митапе от Авито! ☄
Вечером 27 октября вас ждут в офисе на Лесной, чтобы обсудить:
➡ кейс оптимизации GC в Python от Саши Федосеева, backend-инженера из команды Main Page Tech Авито;
➡ как mypy укрощает Python в большой компании вместе с Сергеем Яхницким из Яндекса.
После докладов, как и сказали выше, вместе с участниками спикеры обсудят, подходит ли Python для запуска больших нагруженных решений в формате круглого стола.
Для тех, кто не успевает вырваться из офиса или дома, будет онлайн-трансляция.
Так что не откладывайте, регистрируйтесь и зовите коллег — все подробности по ссылке.
Вечером 27 октября вас ждут в офисе на Лесной, чтобы обсудить:
После докладов, как и сказали выше, вместе с участниками спикеры обсудят, подходит ли Python для запуска больших нагруженных решений в формате круглого стола.
Для тех, кто не успевает вырваться из офиса или дома, будет онлайн-трансляция.
Так что не откладывайте, регистрируйтесь и зовите коллег — все подробности по ссылке.
Please open Telegram to view this post
VIEW IN TELEGRAM