@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11🔥8👍5🤩2
This media is not supported in your browser
VIEW IN TELEGRAM
У VK миллионы пользователей. А теперь представьте, сколько легаси и логов.
В канале Backend VK Hub инженеры VK рассказывают о том, что происходит за кулисами больших сервисов и как справляться со всей этой красотой.
Подписывайтесь, если хочется не только читать, но и обмениваться опытом с практикующими инженерами.
В канале Backend VK Hub инженеры VK рассказывают о том, что происходит за кулисами больших сервисов и как справляться со всей этой красотой.
Подписывайтесь, если хочется не только читать, но и обмениваться опытом с практикующими инженерами.
🔥14❤12😁7👍4😢4🤩3
🎨 Улучшение изображений с помощью SRPO
SRPO — это метод, который оптимизирует процесс восстановления изображений с высокой степенью шума, используя новую стратегию выборки и прямую обратную связь. Он обеспечивает более быструю и стабильную тренировку моделей, минимизируя вычислительные затраты и избегая проблем с переобучением.
🚀Основные моменты:
- Эффективное восстановление изображений с высокой степенью шума.
- Ускоренная тренировка за счет оптимизации с аналитическими градиентами.
- Отсутствие проблем с "взломом" вознаграждений.
- Динамическое управление текстовыми условиями для настройки предпочтений.
📌 GitHub: https://github.com/Tencent-Hunyuan/SRPO
@pythonl
SRPO — это метод, который оптимизирует процесс восстановления изображений с высокой степенью шума, используя новую стратегию выборки и прямую обратную связь. Он обеспечивает более быструю и стабильную тренировку моделей, минимизируя вычислительные затраты и избегая проблем с переобучением.
🚀Основные моменты:
- Эффективное восстановление изображений с высокой степенью шума.
- Ускоренная тренировка за счет оптимизации с аналитическими градиентами.
- Отсутствие проблем с "взломом" вознаграждений.
- Динамическое управление текстовыми условиями для настройки предпочтений.
📌 GitHub: https://github.com/Tencent-Hunyuan/SRPO
@pythonl
❤11👍4🔥4
📚✨ Lue - Умный терминальный ридер с TTS
Lue — это терминальный ридер электронных книг, поддерживающий множество форматов, включая EPUB и PDF. Он предлагает текст в речь с возможностью настройки скорости воспроизведения и синхронизации с выделением слов, что улучшает восприятие текста.
🚀Основные моменты:
- Поддержка форматов: EPUB, PDF, TXT и др.
- Модульная система TTS с Edge и Kokoro.
- Кроссплатформенность: macOS, Linux, Windows.
- Настройка скорости воспроизведения от 1x до 3x.
- Удобный интерфейс с поддержкой мыши и клавиатуры.
📌 GitHub: https://github.com/superstarryeyes/lue
Lue — это терминальный ридер электронных книг, поддерживающий множество форматов, включая EPUB и PDF. Он предлагает текст в речь с возможностью настройки скорости воспроизведения и синхронизации с выделением слов, что улучшает восприятие текста.
🚀Основные моменты:
- Поддержка форматов: EPUB, PDF, TXT и др.
- Модульная система TTS с Edge и Kokoro.
- Кроссплатформенность: macOS, Linux, Windows.
- Настройка скорости воспроизведения от 1x до 3x.
- Удобный интерфейс с поддержкой мыши и клавиатуры.
📌 GitHub: https://github.com/superstarryeyes/lue
❤11👍4🔥3
🎁 Авто-бот для покупки подарков в Telegram
Этот бот автоматически ищет и покупает подарки по заданным критериям, интегрируясь с Telegram. Он предлагает настраиваемые параметры и способен быстро обрабатывать заказы.
🚀 Основные моменты:
- Полностью автоматический поиск новых подарков
- Высокая скорость покупки (более 5 подарков в секунду)
- Интеграция с Telegram-ботом
- Настраиваемые параметры для фильтрации подарков
- Постоянный мониторинг доступных подарков
📌 GitHub: https://github.com/ThunderTo/Gift-Buyer-Tg
#python
@pythonl
Этот бот автоматически ищет и покупает подарки по заданным критериям, интегрируясь с Telegram. Он предлагает настраиваемые параметры и способен быстро обрабатывать заказы.
🚀 Основные моменты:
- Полностью автоматический поиск новых подарков
- Высокая скорость покупки (более 5 подарков в секунду)
- Интеграция с Telegram-ботом
- Настраиваемые параметры для фильтрации подарков
- Постоянный мониторинг доступных подарков
📌 GitHub: https://github.com/ThunderTo/Gift-Buyer-Tg
#python
@pythonl
❤11😱7👍2😁2🔥1
🔥 Успех в IT = скорость + знания + окружение
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: https://t.me/+EPEFXp67QfIyMjMy
Python: https://t.me/+cq7O4sOHldY1ZTIy
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: https://t.me/+EPEFXp67QfIyMjMy
Python: https://t.me/+cq7O4sOHldY1ZTIy
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
❤9
🚀 Обучение LLM-агентов для многоповоротного принятия решений
AgentGym-RL — это фреймворк для тренировки LLM-агентов, способных принимать решения в сложных многоповоротных сценариях с использованием методов усиленного обучения. Он предлагает разнообразные реальные сценарии и поддерживает популярные алгоритмы RL, улучшая производительность моделей до уровня коммерческих решений.
🚀 Основные моменты:
- Модульная система для гибкости и расширяемости.
- Поддержка различных реальных сред, включая веб-навигацию и глубокий поиск.
- Метод ScalingInter-RL для стабильного обучения агентов.
- Интерактивный интерфейс для визуализации взаимодействий.
📌 GitHub: https://github.com/WooooDyy/AgentGym-RL
#python
AgentGym-RL — это фреймворк для тренировки LLM-агентов, способных принимать решения в сложных многоповоротных сценариях с использованием методов усиленного обучения. Он предлагает разнообразные реальные сценарии и поддерживает популярные алгоритмы RL, улучшая производительность моделей до уровня коммерческих решений.
🚀 Основные моменты:
- Модульная система для гибкости и расширяемости.
- Поддержка различных реальных сред, включая веб-навигацию и глубокий поиск.
- Метод ScalingInter-RL для стабильного обучения агентов.
- Интерактивный интерфейс для визуализации взаимодействий.
📌 GitHub: https://github.com/WooooDyy/AgentGym-RL
#python
❤6🔥6👍2
🧠 Инструменты для искусственного интеллекта
Собрание полезных AI-инструментов и ресурсов для разработчиков, исследователей и энтузиастов. Участвуйте в развитии сообщества, добавляя новые сервисы и улучшая коллекцию.
🚀 Основные моменты:
- Широкий выбор AI-инструментов по различным категориям.
- Открытое сообщество для совместной работы и улучшения.
- Возможность вносить свой вклад через Pull Requests.
📌 GitHub: https://github.com/Hyraze/collective-ai-tools
#python
Собрание полезных AI-инструментов и ресурсов для разработчиков, исследователей и энтузиастов. Участвуйте в развитии сообщества, добавляя новые сервисы и улучшая коллекцию.
🚀 Основные моменты:
- Широкий выбор AI-инструментов по различным категориям.
- Открытое сообщество для совместной работы и улучшения.
- Возможность вносить свой вклад через Pull Requests.
📌 GitHub: https://github.com/Hyraze/collective-ai-tools
#python
GitHub
GitHub - Hyraze/collective-ai-tools: AI tools platform with 800+ curated tools, built-in workspace tools, and job board for developers…
AI tools platform with 800+ curated tools, built-in workspace tools, and job board for developers and researchers. - Hyraze/collective-ai-tools
❤5👍1🔥1
Wink AI Challenge — хакатон на стыке IT и кино. Участников ждут задачи, которые ускорят производство фильмов и сериалов за счёт прикладных AI-решений. Призовой фонд соревнования — 1 125 000 рублей.
Регистрация до 31 октября: https://cnrlink.com/winkaichallengepydjango
Приглашаем на первый в России хакатон, посвящённый применению ИИ в кинопроизводстве, ML-инженеров, backend- и frontend-разработчиков, специалистов в DevOps, MLOps, а также инженеров в сфере мультимедиа.
Вы сможете:
🔸 Разработать ML-модель, которую оценят и будут использовать продюсеры популярных российских фильмов и сериалов.
🔸 Решить кейсы, основанные на реальных задачах, с которыми продюсеры сталкиваются каждый день.
🔸 Использовать настоящие сценарии и видеоматериалы для анализа текстов, извлечения сущностей и генерации структуры съёмок.
🔸 Попрактиковаться в применении NLP, NER и мультимодальных данных в задачах кинопроизводства.
Регистрируйтесь на Wink AI Challenge, чтобы разработать ИИ-ассистента, который станет частью производства фильмов и сериалов: https://cnrlink.com/winkaichallengepydjango
Регистрация до 31 октября: https://cnrlink.com/winkaichallengepydjango
Приглашаем на первый в России хакатон, посвящённый применению ИИ в кинопроизводстве, ML-инженеров, backend- и frontend-разработчиков, специалистов в DevOps, MLOps, а также инженеров в сфере мультимедиа.
Вы сможете:
🔸 Разработать ML-модель, которую оценят и будут использовать продюсеры популярных российских фильмов и сериалов.
🔸 Решить кейсы, основанные на реальных задачах, с которыми продюсеры сталкиваются каждый день.
🔸 Использовать настоящие сценарии и видеоматериалы для анализа текстов, извлечения сущностей и генерации структуры съёмок.
🔸 Попрактиковаться в применении NLP, NER и мультимодальных данных в задачах кинопроизводства.
Регистрируйтесь на Wink AI Challenge, чтобы разработать ИИ-ассистента, который станет частью производства фильмов и сериалов: https://cnrlink.com/winkaichallengepydjango
❤4
🛠️ Улучшаем отладку с пользовательскими типами
Этот репозиторий помогает отображать пользовательские типы и контейнеры в отладчике LLDB, делая их более понятными. С помощью кастомных функций и синтетических провайдеров вы сможете легко видеть значения ваших объектов и контейнеров.
🚀Основные моменты:
- Поддержка пользовательских типов и контейнеров в LLDB.
- Использование Python для настройки отображения.
- Примеры для классов и контейнеров, таких как
- Удобное взаимодействие с отладчиком через
📌 GitHub: https://github.com/codeinred/lldb_user_types
#python
Этот репозиторий помогает отображать пользовательские типы и контейнеры в отладчике LLDB, делая их более понятными. С помощью кастомных функций и синтетических провайдеров вы сможете легко видеть значения ваших объектов и контейнеров.
🚀Основные моменты:
- Поддержка пользовательских типов и контейнеров в LLDB.
- Использование Python для настройки отображения.
- Примеры для классов и контейнеров, таких как
example::date
и example::span
.- Удобное взаимодействие с отладчиком через
.lldbinit
.📌 GitHub: https://github.com/codeinred/lldb_user_types
#python
❤6👍2🔥2
Media is too big
VIEW IN TELEGRAM
МТС приглашает всех, кто пишет на С++, Go, Python, JS, Java, C# и других языках, на True Tech Champ — всероссийский чемпионат по программированию. Соревнование будет проходить в двух треках.
Трек 1. Алгоритмический. Индивидуальный зачет [призовой фонд 2 750 000 рублей]
Реши задачи, которые помогут прокачаться в работе с алгоритмами и структурами данных. Похожие задания встречаются на собеседованиях в МТС и других крупных компаниях. До 240 лучших участников попадут в финал и сразятся в лайв-кодинге.
Трек 2. Программирование роботов. Командный формат [призовой фонд 7 500 000 рублей]
Проведи робота по виртуальному лабиринту, затем управляй им дистанционно на офлайн-полигоне, а в финале — пройди испытания на реальной площадке и выбей соперников с платформы.
🎁 Организаторы отправят командам финалистов по одному роботу Waveshare Cobra Flex для кастомизации. После соревнований они останутся у участников в качестве подарка.
📍 Зрелищный шоу-финал с ИИ-технологиями, кодерскими челленджами и выступлениями международных и российских спикеров пройдет 21 ноября в МТС Live Холл.
Стоит участвовать, чтобы:
— Освежить знания и прокачать новые навыки.
— Заявить о себе на всю страну, получить карьерный буст и шанс лично пообщаться с HR-специалистами МТС.
⏰ Регистрация участников до 20 октября на сайте.
Трек 1. Алгоритмический. Индивидуальный зачет [призовой фонд 2 750 000 рублей]
Реши задачи, которые помогут прокачаться в работе с алгоритмами и структурами данных. Похожие задания встречаются на собеседованиях в МТС и других крупных компаниях. До 240 лучших участников попадут в финал и сразятся в лайв-кодинге.
Трек 2. Программирование роботов. Командный формат [призовой фонд 7 500 000 рублей]
Проведи робота по виртуальному лабиринту, затем управляй им дистанционно на офлайн-полигоне, а в финале — пройди испытания на реальной площадке и выбей соперников с платформы.
🎁 Организаторы отправят командам финалистов по одному роботу Waveshare Cobra Flex для кастомизации. После соревнований они останутся у участников в качестве подарка.
📍 Зрелищный шоу-финал с ИИ-технологиями, кодерскими челленджами и выступлениями международных и российских спикеров пройдет 21 ноября в МТС Live Холл.
Стоит участвовать, чтобы:
— Освежить знания и прокачать новые навыки.
— Заявить о себе на всю страну, получить карьерный буст и шанс лично пообщаться с HR-специалистами МТС.
⏰ Регистрация участников до 20 октября на сайте.
❤9👍4🔥3😢3😁1
1️⃣0️⃣0️⃣0️⃣ БЕСПЛАТНЫХ приложений, которые можно развернуть прямо у себя на сервере. На GitHub нашли настоящую сокровищницу!
50+ категорий: от аналитики и бронирований до автоматизации рутины и чтения книг.
Внутри — сотни инструментов под любые задачи: файлообменники, парсеры, сервисы для мониторинга и даже решения для ресторанов и отелей.
Всё работает локально — данные остаются только у вас, ничего не уходит разработчикам или в сеть.
https://github.com/awesome-selfhosted/awesome-selfhosted
@pythonl
50+ категорий: от аналитики и бронирований до автоматизации рутины и чтения книг.
Внутри — сотни инструментов под любые задачи: файлообменники, парсеры, сервисы для мониторинга и даже решения для ресторанов и отелей.
Всё работает локально — данные остаются только у вас, ничего не уходит разработчикам или в сеть.
https://github.com/awesome-selfhosted/awesome-selfhosted
@pythonl
❤7👍4🔥3
🐍 Как ускорить ML-эксперименты на Python без настройки железа
Вы пишете на Python, используете PyTorch, TensorFlow или JAX — и тратите часы на установку драйверов, CUDA и зависимостей, вместо того чтобы просто запустить обучение.
В immers.cloud мы убрали эту рутину:
💰 Посекундная тарификация: тарифы от 23 руб/час, платите только за время, когда сервер реально работает.
⚡️ Быстрый старт: нужный сервер поднимается за пару минут.
📈 Гибкость и масштабируемость: 13 моделей видеокарт на выбор, от RTX 3090 до флагманских Н200.
🔧 Удобство: готовые образы для ваших задач, чтобы не тратить время на настройку.
А если нужно прерваться — можно просто заморозить ВМ с помощью функции Shelve: данные сохранятся, а платить за простои не придется.⠀
🔗 Начните сейчас и получите +20 % к первому пополнению!
Вы пишете на Python, используете PyTorch, TensorFlow или JAX — и тратите часы на установку драйверов, CUDA и зависимостей, вместо того чтобы просто запустить обучение.
В immers.cloud мы убрали эту рутину:
💰 Посекундная тарификация: тарифы от 23 руб/час, платите только за время, когда сервер реально работает.
⚡️ Быстрый старт: нужный сервер поднимается за пару минут.
📈 Гибкость и масштабируемость: 13 моделей видеокарт на выбор, от RTX 3090 до флагманских Н200.
🔧 Удобство: готовые образы для ваших задач, чтобы не тратить время на настройку.
А если нужно прерваться — можно просто заморозить ВМ с помощью функции Shelve: данные сохранятся, а платить за простои не придется.⠀
🔗 Начните сейчас и получите +20 % к первому пополнению!
❤3🔥3🤩2
🎙️ VoxCPM: Революционный TTS для естественного синтеза речи
VoxCPM — это инновационная система синтеза речи без токенизации, обеспечивающая контекстуально осознанное создание речи и высококачественное клонирование голоса. Она использует диффузионную архитектуру для генерации непрерывных звуковых представлений, что позволяет достигать высокой выразительности и стабильности.
🚀 Основные моменты:
- Контекстуально осознанная генерация речи с естественным звучанием.
- Точное клонирование голоса с минимальным количеством образцов.
- Высокая эффективность синтеза, поддержка потоковой передачи.
📌 GitHub: https://github.com/OpenBMB/VoxCPM
@pythonl
VoxCPM — это инновационная система синтеза речи без токенизации, обеспечивающая контекстуально осознанное создание речи и высококачественное клонирование голоса. Она использует диффузионную архитектуру для генерации непрерывных звуковых представлений, что позволяет достигать высокой выразительности и стабильности.
🚀 Основные моменты:
- Контекстуально осознанная генерация речи с естественным звучанием.
- Точное клонирование голоса с минимальным количеством образцов.
- Высокая эффективность синтеза, поддержка потоковой передачи.
📌 GitHub: https://github.com/OpenBMB/VoxCPM
@pythonl
👍1🔥1