This media is not supported in your browser
VIEW IN TELEGRAM
VLM (Vision-Language Model) — это модель, которая умеет одновременно работать с картинками и текстом: понимать, что изображено, описывать картинку словами, отвечать на вопросы по изображению и совмещать визуальные и текстовые данные.
⚡ Что это значит:
- До 85 раз быстрее и в 3.4 раза компактнее аналогичных VLM
- У крупных моделей время до первого токена стало быстрее в 7.9 раз
- Меньше выходных токенов + быстрее обработка картинок высокого разрешения
🔥Модель работает в реальном времени прямо в браузере через transformers.js и WebGPU.
https://huggingface.co/spaces/apple/fastvlm-webgpu
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18🔥5👍3🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🐍 Необычный Python-совет
В Python можно перегрузить оператор [] и превратить объект в умный словарь или вычисляемый массив. Это позволяет писать очень выразительный код.
Пример: создадим класс, который хранит функцию и вычисляет результат «на лету» при обращении по индексу:
👉 В итоге obj[x] может не просто доставать значение, а вычислять его динамически.
Это мощный приём для DSL, кэшей и ленивых вычислений.
В Python можно перегрузить оператор [] и превратить объект в умный словарь или вычисляемый массив. Это позволяет писать очень выразительный код.
Пример: создадим класс, который хранит функцию и вычисляет результат «на лету» при обращении по индексу:
class PowTable:
def __init__(self, power):
self.power = power
def __getitem__(self, n):
return n ** self.power
squares = PowTable(2)
cubes = PowTable(3)
print(squares[5]) # 25
print(cubes[4]) # 64
👉 В итоге obj[x] может не просто доставать значение, а вычислять его динамически.
Это мощный приём для DSL, кэшей и ленивых вычислений.
❤23🔥11👍8😱6
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Полезный совет: any и all в Python работают с генераторами и используют short-circuit
Иногда в python есть малоизвестные особенности, которые могут сильно помочь.
Например, функция all и any умеют работать не только с простыми списками, но и с генераторами. Это значит, что пайтон остановит проверку сразу, как только результат станет очевидным — это называется "шорт-сёркьют".
Это позволяет писать очень эффективный код без лишних проверок и без создания промежуточных списков.
@pythonl
Иногда в python есть малоизвестные особенности, которые могут сильно помочь.
Например, функция all и any умеют работать не только с простыми списками, но и с генераторами. Это значит, что пайтон остановит проверку сразу, как только результат станет очевидным — это называется "шорт-сёркьют".
nums = [0, 0, 0, 5, 0]
#any (эни) вернёт True, как только найдёт первый элемент != 0
print(any(nums)) # True
#ll (ол) вернёт False, как только встретит первый элемент == 0
print(all(nums)) # False
#использование с генератором — не создаёт лишний список
print(any(x > 10 for x in nums)) # False
Это позволяет писать очень эффективный код без лишних проверок и без создания промежуточных списков.
@pythonl
❤21👍10🔥3
🚀 Современная система сборки Meson
Meson — это высокопроизводительная система сборки, ориентированная на простоту и скорость. Она поддерживает множество языков и инструментов, обеспечивая гибкость и эффективность в разработке.
🚀 Основные моменты:
- Поддержка Python и Ninja для сборки.
- Быстрая и интуитивно понятная настройка проектов.
- Активное сообщество и возможность внесения вкладов.
- Совместимость с различными платформами и языками.
📌 GitHub: https://github.com/mesonbuild/meson
@pythonl
Meson — это высокопроизводительная система сборки, ориентированная на простоту и скорость. Она поддерживает множество языков и инструментов, обеспечивая гибкость и эффективность в разработке.
🚀 Основные моменты:
- Поддержка Python и Ninja для сборки.
- Быстрая и интуитивно понятная настройка проектов.
- Активное сообщество и возможность внесения вкладов.
- Совместимость с различными платформами и языками.
📌 GitHub: https://github.com/mesonbuild/meson
@pythonl
❤9👍4🔥3🤩2
⚠️ SQL-инъекция через f-string
Если подставлять значения прямо в SQL через f-string, злоумышленник может выполнить любой код в базе:
💥 И вот таблица accounts удалена!
Почему так?
Потому что строка с именем вставляется как есть и воспринимается как часть SQL-запроса.
✅ Правильный способ — использовать параметры:
✔ Имя ищется как текст, база остаётся в безопасности.
👉 Запомни: никогда не вставляй пользовательские данные напрямую в SQL.
Используй параметризованные запросы — это надёжная защита от SQL-инъекций.
@pythonl
Если подставлять значения прямо в SQL через f-string, злоумышленник может выполнить любой код в базе:
name = "Alice'; DROP TABLE accounts; --"
query = f"SELECT * FROM accounts WHERE name = '{name}'"
conn.sql(query)
💥 И вот таблица accounts удалена!
Почему так?
Потому что строка с именем вставляется как есть и воспринимается как часть SQL-запроса.
✅ Правильный способ — использовать параметры:
name = "Alice'; DROP TABLE accounts; --"
query = "SELECT * FROM accounts WHERE name = ?"
conn.sql(query, params=(name,))
✔ Имя ищется как текст, база остаётся в безопасности.
👉 Запомни: никогда не вставляй пользовательские данные напрямую в SQL.
Используй параметризованные запросы — это надёжная защита от SQL-инъекций.
@pythonl
👍25❤10🔥9😱2😁1
🔍 Django ModelSearch: Умный поиск для ваших моделей
Django ModelSearch позволяет индексировать модели Django и осуществлять поиск с помощью ORM. Поддерживает PostgreSQL FTS, SQLite FTS5, Elasticsearch и OpenSearch. Идеально подходит для создания мощных поисковых решений в ваших приложениях.
🚀Основные моменты:
- Индексация моделей в Elasticsearch и OpenSearch
- Поддержка автозаполнения и фасетного поиска
- Возможность использования существующих QuerySets
- Поддержка нечеткого поиска и структурированных запросов
- Нулевая простоя при перестройке индекса
📌 GitHub: https://github.com/kaedroho/django-modelsearch
@pythonl
#python
Django ModelSearch позволяет индексировать модели Django и осуществлять поиск с помощью ORM. Поддерживает PostgreSQL FTS, SQLite FTS5, Elasticsearch и OpenSearch. Идеально подходит для создания мощных поисковых решений в ваших приложениях.
🚀Основные моменты:
- Индексация моделей в Elasticsearch и OpenSearch
- Поддержка автозаполнения и фасетного поиска
- Возможность использования существующих QuerySets
- Поддержка нечеткого поиска и структурированных запросов
- Нулевая простоя при перестройке индекса
📌 GitHub: https://github.com/kaedroho/django-modelsearch
@pythonl
#python
❤8👍4🔥4
🚀 Python Pro совет
Хотите измерить время выполнения куска кода без лишних библиотек?
Используйте модуль
💡 Это простой способ проверить, какой из вариантов реализации быстрее.
Сравнивайте разные подходы и оптимизируйте критичные куски кода на практике.
@pythonl
Хотите измерить время выполнения куска кода без лишних библиотек?
Используйте модуль
timeit
, встроенный прямо в Python:
# Запуск из командной строки
python -m timeit -n 100 -r 5 "sum(range(1000))"
# В коде
import timeit
print(timeit.timeit("sum(range(1000))", number=1000))
💡 Это простой способ проверить, какой из вариантов реализации быстрее.
Сравнивайте разные подходы и оптимизируйте критичные куски кода на практике.
@pythonl
👍17❤9🔥7
📐 Agent Reinforcement Trainer — фреймворк для обучения ИИ-агентов через reinforcement learning
Проект предлагает удобный способ прокачки LLM для решения практических задач. Во время работы ART использует метод GRPO и позволяет обучать агентов работать с MCP-серверами, играть в игры и выполнять другие действия через взаимодействие со средой.
Инструмент минимально требователен к данным — система сама анализирует доступные инструменты и генерирует учебные сценарии. Поддерживается интеграция с популярными языковыми моделями, включая Qwen 2.5.
🤖 GitHub
@pythonl
Проект предлагает удобный способ прокачки LLM для решения практических задач. Во время работы ART использует метод GRPO и позволяет обучать агентов работать с MCP-серверами, играть в игры и выполнять другие действия через взаимодействие со средой.
Инструмент минимально требователен к данным — система сама анализирует доступные инструменты и генерирует учебные сценарии. Поддерживается интеграция с популярными языковыми моделями, включая Qwen 2.5.
🤖 GitHub
@pythonl
❤9👍3🔥2
👨💻 Omnara — Mission Control для AI-агентов
Что это?
Omnara — это «диспетчерская» для ваших AI-агентов. С её помощью можно управлять и наблюдать за работой агентов в реальном времени: через терминал, веб-интерфейс и мобильное приложение.
Возможности
- Отслеживание всех шагов агента в реальном времени.
- Push-уведомления, когда агент ждёт обратной связи.
- Ответы и контроль прямо с телефона или браузера.
- Единый дашборд для всех агентов.
Почему это удобно
- Не нужно сидеть за ПК, чтобы держать процесс под контролем.
- Всё open-source, можно разворачивать самостоятельно.
- Подходит как для разработчиков-одиночек, так и для команд.
👉 Omnara делает взаимодействие с AI-агентами гибким и удобным: вы всегда в курсе, что они делают, и можете вмешаться в любой момент.
🔗 GitHub
@pythonl
Что это?
Omnara — это «диспетчерская» для ваших AI-агентов. С её помощью можно управлять и наблюдать за работой агентов в реальном времени: через терминал, веб-интерфейс и мобильное приложение.
Возможности
- Отслеживание всех шагов агента в реальном времени.
- Push-уведомления, когда агент ждёт обратной связи.
- Ответы и контроль прямо с телефона или браузера.
- Единый дашборд для всех агентов.
Почему это удобно
- Не нужно сидеть за ПК, чтобы держать процесс под контролем.
- Всё open-source, можно разворачивать самостоятельно.
- Подходит как для разработчиков-одиночек, так и для команд.
👉 Omnara делает взаимодействие с AI-агентами гибким и удобным: вы всегда в курсе, что они делают, и можете вмешаться в любой момент.
🔗 GitHub
@pythonl
❤8🔥7👍2
🔥 Успех в IT = скорость + знания + окружение
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.me/ai_machinelearning_big_data
Python: t.me/python_job_interview
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.me/ai_machinelearning_big_data
Python: t.me/python_job_interview
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
❤3🔥3👍2😁1
🚀 Lemonade SDK — локальный сервер для LLM с максимальной производительностью
Что это?
Lemonade — это open-source проект (спонсируется AMD), который позволяет запускать большие языковые модели прямо у себя: на ПК, в браузере или на сервере. Всё работает локально, без облака, с поддержкой GPU и NPU, и при этом совместимо со стандартом OpenAI API.
Возможности
- Lemonade Server — локальный сервер, который имитирует OpenAI API. Поддерживает движки llama.cpp (GGUF), ONNX Runtime GenAI и HuggingFace Transformers. Работает с ускорением через Vulkan и ROCm.
- Lemonade CLI — консольный инструмент для запуска моделей, тестов производительности, проверки памяти и точности.
- Python API — простой способ подключить LLM к своим скриптам и приложениям.
Интеграция и совместимость
- Полная поддержка OpenAI API (`/chat/completions`,
- SDK доступен для Python, C++, Java, C#, Go, Node.js, Rust, PHP и других языков.
Почему это важно
- Всё работает локально → выше приватность и ниже затраты.
- Автоматическая оптимизация под ваше железо.
- Подходит для продакшн-нагрузок, edge-устройств и экспериментов.
- Удобные инструменты: сервер, CLI, Python API, web-панель.
- Проект активно развивается: свежие релизы выходят каждую неделю.
👉 Репозиторий: [github.com/lemonade-sdk/lemonade](https://github.com/lemonade-sdk/lemonade)
#LLM #AI #Lemonade #OpenSource #AMD
@pythonl
Что это?
Lemonade — это open-source проект (спонсируется AMD), который позволяет запускать большие языковые модели прямо у себя: на ПК, в браузере или на сервере. Всё работает локально, без облака, с поддержкой GPU и NPU, и при этом совместимо со стандартом OpenAI API.
Возможности
- Lemonade Server — локальный сервер, который имитирует OpenAI API. Поддерживает движки llama.cpp (GGUF), ONNX Runtime GenAI и HuggingFace Transformers. Работает с ускорением через Vulkan и ROCm.
- Lemonade CLI — консольный инструмент для запуска моделей, тестов производительности, проверки памяти и точности.
- Python API — простой способ подключить LLM к своим скриптам и приложениям.
Интеграция и совместимость
- Полная поддержка OpenAI API (`/chat/completions`,
/completions
, /models
, /load
, /stats
и др.). - SDK доступен для Python, C++, Java, C#, Go, Node.js, Rust, PHP и других языков.
Почему это важно
- Всё работает локально → выше приватность и ниже затраты.
- Автоматическая оптимизация под ваше железо.
- Подходит для продакшн-нагрузок, edge-устройств и экспериментов.
- Удобные инструменты: сервер, CLI, Python API, web-панель.
- Проект активно развивается: свежие релизы выходят каждую неделю.
👉 Репозиторий: [github.com/lemonade-sdk/lemonade](https://github.com/lemonade-sdk/lemonade)
#LLM #AI #Lemonade #OpenSource #AMD
@pythonl
❤12👍6😁1🤩1
⁉️Хотите начать карьеру Data Scientist? Освойте методы ансамблирования ML
Чтобы понять, как добиться высокого качества предсказания в машинном обучении, присоединяйтесь к открытому вебинару 8 сентября в 18:00 МСК! На уроке мы разберем ключевые методы ансамблирования моделей, которые использует каждый Data Scientist: Бэггинг, Random Forest и Градиентный бустинг. Эти методы помогут вам повысить точность ваших моделей и научиться их эффективно применять в реальных задачах.
После занятия вы будете уверенно работать с ансамблями моделей на Python и знать, как применять их на практике для получения лучших результатов.
➡️ Присоединяйтесь и получите скидку на курс «Machine Learning. Basic»: https://otus.pw/pd7e/?erid=2W5zFHuTx9e
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
Чтобы понять, как добиться высокого качества предсказания в машинном обучении, присоединяйтесь к открытому вебинару 8 сентября в 18:00 МСК! На уроке мы разберем ключевые методы ансамблирования моделей, которые использует каждый Data Scientist: Бэггинг, Random Forest и Градиентный бустинг. Эти методы помогут вам повысить точность ваших моделей и научиться их эффективно применять в реальных задачах.
После занятия вы будете уверенно работать с ансамблями моделей на Python и знать, как применять их на практике для получения лучших результатов.
➡️ Присоединяйтесь и получите скидку на курс «Machine Learning. Basic»: https://otus.pw/pd7e/?erid=2W5zFHuTx9e
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
❤3
🔥 Thyme: Think Beyond Images
Thyme — это инновационная модель, которая улучшает обработку изображений и сложные задачи рассуждения, используя автономное генерирование и выполнение операций через исполняемый код. Она сочетает в себе методы супервайзинга и обучения с подкреплением, обеспечивая высокую точность выполнения кода.
🚀 Основные моменты:
- Автономная генерация и выполнение операций с изображениями.
- Комбинация супервайзинга и обучения с подкреплением.
- Поддержка высокоразрешающей перцепции и сложного рассуждения.
- Использует алгоритм GRPO-ATS для оптимизации работы.
📌 GitHub: https://github.com/yfzhang114/Thyme
Thyme — это инновационная модель, которая улучшает обработку изображений и сложные задачи рассуждения, используя автономное генерирование и выполнение операций через исполняемый код. Она сочетает в себе методы супервайзинга и обучения с подкреплением, обеспечивая высокую точность выполнения кода.
🚀 Основные моменты:
- Автономная генерация и выполнение операций с изображениями.
- Комбинация супервайзинга и обучения с подкреплением.
- Поддержка высокоразрешающей перцепции и сложного рассуждения.
- Использует алгоритм GRPO-ATS для оптимизации работы.
📌 GitHub: https://github.com/yfzhang114/Thyme
❤9👍7🔥3