Python/ django
59.3K subscribers
2.12K photos
76 videos
48 files
2.85K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
Media is too big
VIEW IN TELEGRAM
💻 Copilot Agent Mode — новый этап в развитии AI-помощников для разработчиков

Теперь доступен всем в июньском обновлении Visual Studio!

🧠 Что умеет:
• Сам строит план разработки
• Выполняет задачи пошагово
• Адаптируется по ходу процесса
• Циклично доводит работу до завершения

Это уже не просто автодополнение — это полноценный агент, способный решать проектные задачи от начала до конца.

📖 Подробнее: https://msft.it/6018SQDuo
#VisualStudio #Copilot #AIdev #AItools #GitHubCopilot

#Copilot

@pythonl
Уверены в своих навыках кодинга?
 
Тогда заглядывайте в канал Selectel. Всю неделю в канале будут выходить полезные материалы для разработчиков:
● Подробная инструкция, как сделать приложение на базе веб-технологий;
● Технические задачи для настоящих Python-энтузиастов;
● Идеи для pet-проектов: от генерации сложных паролей до нейросети для создания изображений;
● И даже выгодные продуктовые предложения, которые помогут воплотить идеи на инфраструктуре Selectel.
 
Подписывайтесь на канал и прокачивайте знания в сфере разработки ➡️
 
Реклама, АО «Селектел», ИНН: 7810962785, ERID: 2VtzqwdjwRx
🐍 PyLeak — найди утечку памяти в своём Python-коде

PyLeak — простой и мощный инструмент для отладки утечек памяти в Python-приложениях.

🔍 Возможности:
• Показывает объекты, которые не удаляет сборщик мусора
• Строит граф зависимостей между объектами
• Выявляет циклические ссылки и "висящие" объекты
• Поддерживает визуализацию через Graphviz

📦 Установка:

pip install pyleak


🧰 Идеален для отладки сервисов, где память утекает незаметно.

🔗 GitHub

@pythonl
Российский рынок СУБД демонстрирует рост — 41,7 млрд ₽ в 2025 году, +16% в год. Главные драйверы: импортозамещение и ИИ.

О приоритетах и текущей стратегии развития платформы данных Yandex Cloud рассказал Леонид Савченков:

В центре внимания надёжность и масштабируемость — особенно для Postgres;
Активное развитие опенсорса: вклад в Cloudberry (ASF), собственный pg-sharding, а YTsaurus может быть особенно полезен Python-разработчикам благодаря поддержке ML;
YTsaurus и YDB теперь доступны для on-premise-развёртывания - решения можно запускать у себя;
Обноваления платформы данных: в DataLens появился редактор графиков на JS, галерея дашбордов и сертификация аналитиков; улучшены механизмы шардирования, а также инструменты масштабирования и отказоустойчивости.

🔍 Отказоустойчивость, открытость и собственные разработки — ключ к суверенной инфраструктуре хранения и обработки данных.

Полное интервью
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Совет по Python:


from pathlib import Path

# Создаем объект Path для заданного пути к файлу
path = Path("C:/Users/test.md")

# Получаем имя файла вместе с расширением
print(path.name) # 'test.md'

# Получаем только имя файла без расширения
print(path.stem) # 'test'

# Получаем расширение файла (с точкой)
print(path.suffix) # '.md'

# Получаем родительскую директорию (папку)
print(path.parent) # 'C:/Users'

С помощью модуля pathlib вы можете получать различные части пути — имя файла, расширение, родительскую директорию. Это упрощает работу с файловыми путями и их анализ.

Объяснение:

- path.name — возвращает полное имя файла (например, test.md).

- path.stem — возвращает имя файла без расширения (например, test).

- path.suffix — возвращает расширение файла (например, .md).

- path.parent — возвращает путь к родительской директории (например, C:/Users).

Модуль pathlib позволяет удобно разбирать путь к файлу на части и работать с ними, не используя строковые операции вручную. Это особенно полезно для кроссплатформенной работы с файлами и папками.

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 MiniMax Agent — новый универсальный ИИ-агент для сложных задач

Команда MiniMax представила MiniMax Agent — интеллектуального агента, способного решать многошаговые, долгосрочные и комплексные задачи.

Что умеет MiniMax Agent:
- Поддерживает комплексное и многошаговое планирование на уровне
- Разбиение задач на подзадачи и их исполнение
- МОщные инструменты генерации кода
- Мультимодальность
- Интеграция с MCP

🔗 https://agent.minimax.io

@ai_machinelearning_big_data

#AI #IntelligentAgent #MiniMax #MultiStepPlanning #Automation #ToolUse #MCP #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🎯 Практическое руководство: Signals — реактивное управление состоянием в Python

Недавно вышло отличное руководство «The Missing Manual for Signals: State Management for Python Developers», где автор показывает, как внедрять реактивную модель на Python с помощью библиотеки

Почему Signals полезны

Стандартный подход—императивный—скрывает зависимости между переменными, что ведёт к ошибкам:


class OrderService:
def add_order(self, order):
self.orders.append(order)
self.total += order.amount
self.avg = self.total / len(self.orders)
self.notify_if_needed()
self.track_analytics()


Если забыть обновить одно значение — всё сломается.

Как работают Signals

Signals = реактивные переменные, которые:

1. Хранят значение (`Signal`)
2. Автоматически вычисляют производные (`Computed`)
3. Выполняют побочные действия (`Effect`) на изменениях

Пример:


from reaktiv import Signal, Computed, Effect

orders = Signal([])
total = Computed(lambda: sum(o.amount for o in orders()))
avg = Computed(lambda: total() / len(orders()) if orders() else 0)
Effect(lambda: notify(avg()) if avg() > 100 else None)

orders.update(lambda os: os + [new_order])


Теперь всё обновляется автоматически — вручную ничего делать не нужно.

Когда стоит применять


* Сложные производные значения, зависящие от нескольких источников
* Реальные Cascading-настройки, например, конфиг, кэши, соединения
* Сценарии real-time: дашборды, метрики, воркфлоу

Когда лучше не использовать

* Простые последовательные преобразования
* Одноразовые API-вызовы
* Прямолинейные функции (например, вычисление налога)

Основные преимущества

- Чёткое, декларативное управление зависимостями
- Обновления только нужных значений благодаря ленивому пересчёту
- Упрощение тестирования и устранение ошибок обновления

Реальные примеры

- Управление конфигурацией микросервисов
- Реализация real-time дашбордов
- Мониторинг состояния кластера, триггеры скейлинга

💡 Итог: Signals — отличная альтернатива громоздкому императиву.
Декларируешь связь один раз, и система сама поддерживает согласованность.

Полезно как для backend‑разработчиков, так и для ML‑инженеров.
📚 Материал — ~16 минут чтения, и он того стоит

📌 Читать

@pythonl
Выбираете магистратуру? Обратите внимание на бесплатные партнёрские программы Яндекса в топовых вузах России!

🔹 «Аппаратная разработка умных устройств» — межуниверситетская магистратура в НИУ ВШЭ и МФТИ. Вы будете решать реальные задачи, с которыми работают инженеры сервиса «Алиса и Умные устройства Яндекса».

🔹 «Искусственный интеллект в робототехнике» — программа в Сколтехе, основанная на опыте Яндекс Маркета. Вас ждёт работа с кейсами, где ИИ меняет процесс логистики и автоматизации.

Программы разрабатывались при участии экспертов Яндекса — действующих практиков в ML и Data Science, а также опытных преподавателей, — поэтому обучение построено на самых актуальных знаниях и реальных задачах.

🚀 Если хотите не просто получить диплом, а вырасти в сильного специалиста, переходите на сайт и выбирайте программу!
📊 Deptry — детектор проблем с зависимостями в Python. Этот инструмент сканирует проект на расхождения между импортами в коде и задекларированными зависимостями. Он работает с Poetry, pip и PDM, находя три типа проблем: неиспользуемые пакеты, отсутствующие зависимости и модули, ошибочно помеченные как dev-зависимости.

Инструмент анализирует не только requirements.txt, но и динамические импорты черезависимостями что снижает количество ложных срабатываний. Для настройки можно использовать как CLI-аргументы, так и секцию [tool.deptry] в� Deptry — детекто

🤖 GitHub

@pythonl
📈 TradingAgents — мультиагентная LLM-платформа для алгоритмической торговли

🎉 TradingAgents официально открыт! После большого интереса со стороны сообщества разработчики решили выложить весь фреймворк в open-source.

🔧 Что такое TradingAgents:
• Это мультиагентная система, имитирующая работу реальной трейдинговой фирмы
• Каждый агент выполняет свою роль — от анализа данных до принятия решений
• Все агенты основаны на LLM-моделях и взаимодействуют между собой

👥 Роли агентов:
Fundamentals Analyst — анализ финансовых показателей компаний
Sentiment Analyst — оценка настроений по соцсетям и новостям
News Analyst — отслеживание глобальных событий и их влияния на рынок
Technical Analyst — прогноз на основе графиков, индикаторов (MACD, RSI и др.)

⚠️ Важно: проект предназначен для исследовательских целей и не является финансовой рекомендацией. Результаты могут зависеть от модели, данных и параметров генерации.

📦 Возможности:
• CLI и GUI-интерфейс
• Быстрый запуск и кастомизация
• Структура, готовая к масштабированию

🔗 Репозиторий: https://github.com/AI4Finance-Foundation/TradingAgents
#AItrading #LLM #MultiAgent #TradingAgents #fintech #opensource
🛠️ CRUDAdmin — генератор админок на Python за минуты

crudadmin — это фреймворк на Python для моментальной генерации интерфейсов на основе SQLAlchemy-моделей.

🔹 Поддержка Flask и FastAPI
🔹 Автоматическая генерация CRUD-интерфейсов
🔹 Простая настройка и кастомизация форм
🔹 Поддержка авторизации и управления доступом
🔹 Пагинация, поиск, фильтры — всё из коробки

📦 Установка:

pip install crudadmin


🔗 GitHub

@pythonl
Forwarded from Machinelearning
✔️ OpenAI выложили в открытый доступ Customer Service Agent Demo

Теперь у всех есть пример, как сделать продакшн-агентов с маршрутизацией, безопасностью и интерфейсом — от запроса до ответа.

Что это такое:

• Многоагентная система для поддержки клиентов (например: бронирование мест, отмена рейса, статус рейса, FAQ)
• Демка написана на Python + Next.js
• Использует OpenAI Agents SDK
• Встроены guardrails: защита от неуместных запросов и попыток обхода правил
• UI: внутри готовый интерфейс чат-бота

Как работает:

1. Пользователь пишет запрос
2. Система выбирает подходящего агента (например, `SeatBooking`)
3. Агент отвечает или передаёт диалог другому
4. Есть fallback на человека, если нужно

Как запустить:


# Backend
cd python-backend
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
uvicorn api:app --reload --port 8000

# Frontend
cd ui
npm install
npm run dev


Далее открываем: http://localhost:3000

Особенности
• MIT-лицензия — можно адаптировать под свои задачи
• Удобно расширять: добавлять новых агентов, инструменты, правила
• Простой код, всё задокументировано
• Рабочий кейс от OpenAI

🔗 GitHub: github.com/openai/openai-cs-agents-demo

Если вы хотите собрать систему из агентов — это отличная точка старта.

@ai_machinelearning_big_data

#chatgpt #openai #aiagents #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Как написать худший возможный Python-код

Иногда проще показать, как не надо, чем объяснять, как надо.
Вот список «правил», которые помогут вам гарантированно испортить любой Python-проект.

1. 🔒 Используйте непонятные имена переменных
Называйте переменные x, y, a, thing. Абстракция — залог путаницы.


def f(x, y, z=None):
a = x * 2
b = y + a if z else y - a
c = [i for i in range(a) if i % 2]
return sum(c) + b

2.🧠 Пихайте максимум логики в одну строку
Сложные тернарные выражения и вложенные list comprehension — всё в одной строке.


result = [x if x > 0 else (y if y < 0 else z) for x in data if x or y and not z]

3.⚠️ Используйте eval() и exec()
Это медленно, небезопасно и глупо — но зато эффектно.


eval("d['" + key + "']")


4.🔁 Переиспользуйте переменные с разными типами
Пусть одна переменная будет и строкой, и числом, и списком — динамическая типизация же!


value = "42"
value = int(value)
value = [value] * value

5.🌍 Используйте глобальные переменные
Изменяйте состояние приложения откуда угодно. Особенно изнутри функций.


counter = 0

def increment():
global counter
counter += 1

6.🔮 Используйте магические числа и строки
Без пояснений. Пусть коллеги гадают, почему именно 42 или "xyz".


if user.role == "xyz" and user.level > 42:
access_granted()

7.📏 Игнорируйте стиль и отступы
Никаких PEP8, никаких правил. Пиши, как хочешь.


def foo():print("start")
if True:
print("yes")
else:
print("no")

8.🧱 Копируйте код из Stack Overflow, не вникая
Ctrl+C — это тоже разработка.


def complex_logic(x):
return (lambda y: (lambda z: z**2)(y + 1))(x)

9.🧩 Придумывайте абстракции без надобности
Вместо простой функции — классы, фабрики и стратегии.


class HandlerFactory:
def get_handler(self):
class Handler:
def handle(self, x): return x
return Handler()


10. 💤 Добавляйте мёртвый код
Никогда не удаляй — вдруг пригодится. И пусть он грузится в каждый запуск.


def legacy_feature():
print("This feature is deprecated")
return
# нигде не вызывается


11.🔀 Не пишите документацию
Комментарии только мешают. Кто захочет — разберётся.


def a(x): return x+1


12.🧪 Пиши без тестов
Если код работает — зачем его проверять?


# Просто запускай и смотри глазами
process_user(data)


13. 🤖 Не используй AI и автодополнение
Только ручной кодинг, без подсказок. Ошибки — путь мастера.

🧠 Заключение

Все эти советы — примеры того, как не стоит писать код.
Если вы узнали себя — пора остановиться. Ведь Python задуман как язык, где важна читаемость, простота и явность.

"Beautiful is better than ugly.
Explicit is better than implicit.
Readability counts."
— The Zen of Python

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Что отличает настоящих профессионалов в аналитике данных?

Настоящие профессионалы в аналитике данных выделяются не просто техническими навыками, а глубоким пониманием бизнес-контекста. Они видят, как сухие цифры превращаются в стратегические решения, влияющие на прибыль компании и ее развитие.

Многие зацикливаются на изучении инструментов, упуская из виду главное — для чего эти инструменты нужны. Можно идеально владеть Python и SQL, но так и не научиться решать реальные бизнес-задачи.

Где учат аналитике, которая нужна бизнесу? В магистратуре НИУ ВШЭ и Karpov Courses «Аналитика больших данных». Посмотрите бесплатный вводный курс и узнайте, как строится программа и что даст вам диплом..

Спикеры курса — эксперты с реальным опытом: Анатолий Карпов (ex-VK, самый популярный эксперт в сфере аналитике, по данным NEWHR), Нерсес Багиян (Head of DS в Raiffeisen CIB) и другие.

Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627. erid: 2W5zFJaLkFa
🎨 MonsterUI — стильный UI для FastHTML на Python (от Answer.AI)

MonsterUI — это высокоуровневый слой поверх FastHTML, который позволяет быстро создавать красивые веб-интерфейсы на чистом Python без писанины HTML/CSS.

⚙️ Проблема
FastHTML и так упрощает фронтенд, но стильность UI требует громоздких классов или CSS-фреймворков (Tailwind, Bootstrap).
MonsterUI решает это, предоставляя готовые компоненты и умные настройки по умолчанию.

Главные возможности
• Полюбившиеся Tailwind/FrankenUI/DaisyUI скрылки под капотом
• Удобные базовые компоненты: Button, Card, LabelInput и др.
• Семантический текст и стили (H1, P, Blockquote, etc.), оформленные по умолчанию
• Умные layout-хелперы: DivVStacked, Grid, DivFullySpaced и другие
• «Высокоуровневые» компоненты: навбар, модалка, таблицы — готовые шаблоны
• Автоматический рендер Markdown и подсветка кода
• Темы с выбором цветовой схемы, поддержкой light/dark режимов

🚀 Пример компонента


def TeamCard(name, role, location="Remote"):
icons = ("mail", "linkedin", "github")
return Card(
DivLAligned(
DiceBearAvatar(name, h=24, w=24),
Div(H3(name), P(role))),
footer=DivFullySpaced(
DivHStacked(UkIcon("map-pin", height=16), P(location)),
DivHStacked(*(UkIconLink(icon, height=16) for icon in icons))))


Всё чисто, семантично, без CSS-уродства и классов.

🔧 Старт


pip install MonsterUI



from fasthtml.common import *
from monsterui.all import *

app, rt = fast_app(hdrs=Theme.blue.headers())

@rt
def index():
return Card(H1("Hello MonsterUI"), P("Приложение готово!"))

serve()


Преимущества:
• Быстрый старт с современным UI
• Чистый, читаемый Python-код
• Гибкость в кастомизации через Tailwind
• Подтверждённая пригодность в продакшене

🔗 Подробнее: https://www.answer.ai/posts/2025/01/15/monsterui.html

@pythonl

#Python #WebDev #FastHTML #MonsterUI #Tailwind #HTMX #UI #OpenSource
🐍 Python-задача: что выведет этот код с вложенными генераторами?


gen = (x for x in range(3))

def wrap(g):
return (x * 2 for x in g)

gen2 = wrap(gen)

print(list(gen))
print(list(gen2))


🔍 Варианты:
• a) [0, 1, 2], [0, 2, 4]
• b) [0, 1, 2], []
• c) [], [0, 2, 4]
• d) [0, 1, 2], Ошибка

💡 Разбор:

- `gen = (x for x in range(3))` — генератор 0, 1, 2
- `wrap(gen)` — создаёт **новый генератор**, который берёт значения из `gen` и умножает на 2

Но генераторы **исчерпаемы**: после первого полного прохода `list(gen)` → `gen` становится пустым

Значит:

- `list(gen)` → `[0, 1, 2]`
- `gen2 = wrap(gen)` теперь ссылается на **пустой** `gen`
- `list(gen2)` → `[]`

**Правильный ответ: b) `[0, 1, 2]`, `[]`**

🧠 **Вывод:** если оборачиваешь генератор — не "прожигай" его до передачи дальше. Генераторы нельзя перезапустить или "перемотать".

🛠️ Совет: если данные нужны повторно — сохрани их в список:

```
python
data = list(gen)
```

или используй itertools.tee для разветвления итератора.

@pythonl
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 alphaXiv —выпустили расширение для хрома

alphaXiv упрощает работу с научными статьями (arXiv, bioRxiv, PDF):

● чат с ИИ прямо в документе: выделение текста открывает диалог
● ссылки на другие статье через “@” для быстрого вызова статей
● позволяет генерировать блог одним кликом: иллюстрации к статьям, ключевые идеи, перевод
● закладки и автоматические BibTeX-цитаты для хранения и ссылок

https://chromewebstore.google.com/detail/alphaxiv-understand-resea/liihfcjialakefgidmaadhajjikbjjab

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Как написать ещё более ужасный Python-код: часть 2

Первая часть - Как написать худший возможный Python-код здесь.

Если тебе показалось, что хуже уже некуда — ты просто не включал всё сразу.

Вот продолжение правил, которые гарантируют страдания будущих читателей твоего кода.

14. Используй side‑effects везде
Изменяй список внутри функции, возвращай None, пусть никто не знает, что произошло.


def corrupt(data):
for i in range(len(data)):
data[i] = None

15. Ломай SRP (Single Responsibility Principle)
Пусть одна функция отправляет запрос, пишет лог, делает retry, парсит ответ и сохраняет в БД.


def handle_user_request(request):
log_request(request)
try:
response = requests.post(...)
save_to_db(json.loads(response.text)["data"])
except:
retry_later(request)


16. Используй вложенные функции ради хаоса
Функции в функциях в функциях. Замыкания? Да, но не ради пользы, а ради анархии.


def outer():
def middle():
def inner():
print("deep")
inner()
middle()


17. Импортируй всё звёздочкой
Пусть никто не знает, откуда приходят функции. Магия.


from somewhere.unknown import *


18. Используй случайную логику
Добавь random в бизнес-функции. Почему бы и нет?


import random

def calculate_discount():
return random.choice([0, 5, 10, 50])


19. Используй структуры не по назначению
Сохраняй все данные в строках. JSON, XML, дата, числа — всё строкой.


user = {
"name": "Alice",
"age": "27",
"is_active": "true",
"joined": "2023-12-01"
}


20. Игнорируй ошибки
Тихо, мирно, try/except без except. Или просто pass. Не паникуй.



try:
do_critical_operation()
except:
pass


21. Логируй всё подряд
Каждый шаг. Каждую переменную. Каждую мысль.


print("entering loop")
print("value of x:", x)
print("loop end")


22. Используй глобальные настройки через переменные
Никаких config-файлов. Пусть все настройки — глобальные переменные.


DEBUG_MODE = True
RETRY_COUNT = 3

23. Пиши асинхронный код синхронно
async с time.sleep, await с requests.get. Главное — выглядеть современно.


import time

async def fetch_data():
time.sleep(3)
return "data"

24. Храни всё в одной функции
1000 строк? Один def main(). Абсолютно всё. Другие функции — для слабаков.


def main():
# 600 строк бизнес-логики
pass



🧠 Заключение

Если ты следуешь этим правилам — ты либо пишешь код, который никто не осмелится менять,
либо работаешь на тёмной стороне. Но лучше всё же пересмотреть подход.

"Simple is better than complex.
Complex is better than complicated.
Readability counts."
— The Zen of Python

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM