Python Projects & Free Books
38.1K subscribers
611 photos
93 files
307 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
Many data scientists don't know how to push ML models to production. Here's the recipe ๐Ÿ‘‡

๐—ž๐—ฒ๐˜† ๐—œ๐—ป๐—ด๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฒ๐—ป๐˜๐˜€

๐Ÿ”น ๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป / ๐—ง๐—ฒ๐˜€๐˜ ๐——๐—ฎ๐˜๐—ฎ๐˜€๐—ฒ๐˜ - Ensure Test is representative of Online data
๐Ÿ”น ๐—™๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ - Generate features in real-time
๐Ÿ”น ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ข๐—ฏ๐—ท๐—ฒ๐—ฐ๐˜ - Trained SkLearn or Tensorflow Model
๐Ÿ”น ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—ฑ๐—ฒ ๐—ฅ๐—ฒ๐—ฝ๐—ผ - Save model project code to Github
๐Ÿ”น ๐—”๐—ฃ๐—œ ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ - Use FastAPI or Flask to build a model API
๐Ÿ”น ๐——๐—ผ๐—ฐ๐—ธ๐—ฒ๐—ฟ - Containerize the ML model API
๐Ÿ”น ๐—ฅ๐—ฒ๐—บ๐—ผ๐˜๐—ฒ ๐—ฆ๐—ฒ๐—ฟ๐˜ƒ๐—ฒ๐—ฟ - Choose a cloud service; e.g. AWS sagemaker
๐Ÿ”น ๐—จ๐—ป๐—ถ๐˜ ๐—ง๐—ฒ๐˜€๐˜๐˜€ - Test inputs & outputs of functions and APIs
๐Ÿ”น ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด - Evidently AI, a simple, open-source for ML monitoring

๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐—ฑ๐˜‚๐—ฟ๐—ฒ

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ - ๐——๐—ฎ๐˜๐—ฎ ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—™๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด

Don't push a model with 90% accuracy on train set. Do it based on the test set - if and only if, the test set is representative of the online data. Use SkLearn pipeline to chain a series of model preprocessing functions like null handling.

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ - ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜

Train your model with frameworks like Sklearn or Tensorflow. Push the model code including preprocessing, training and validation scripts to Github for reproducibility.

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ - ๐—”๐—ฃ๐—œ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—ป๐˜๐—ฎ๐—ถ๐—ป๐—ฒ๐—ฟ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป

Your model needs a "/predict" endpoint, which receives a JSON object in the request input and generates a JSON object with the model score in the response output. You can use frameworks like FastAPI or Flask. Containzerize this API so that it's agnostic to server environment

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ - ๐—ง๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ด & ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜

Write tests to validate inputs & outputs of API functions to prevent errors. Push the code to remote services like AWS Sagemaker.

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ - ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด

Set up monitoring tools like Evidently AI, or use a built-in one within AWS Sagemaker. I use such tools to track performance metrics and data drifts on online data.
๐Ÿ‘6
Python Important Patterns โœ…
๐Ÿ‘4
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—บ๐—ฒ๐—ป๐˜ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

If youโ€™re serious about starting your tech journey, Python is one of the best languages to master๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ‘จโ€๐ŸŽ“

Iโ€™ve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ€” absolutely FREE๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lOVqmb

Start today, and youโ€™ll thank yourself tomorrow.โœ…๏ธ
๐Ÿ‘2
Python Basics to Advanced Notes.pdf
8.7 MB
๐Ÿ”ฐ FREE HANDWRITTEN Python Basics to Advanced Notes๐Ÿ“š๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป

React โค๏ธ for more like this
๐Ÿ‘6
Forwarded from Artificial Intelligence
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Ever wondered how machines describe images in words?๐Ÿ’ป

Want to get hands-on with cutting-edge AI and computer vision โ€” for FREE?๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42FaT0Y

๐ŸŽฏ Start Learning AI for FREE
๐Ÿ‘1
Preparing for a data science interview can be challenging, but with the right approach, you can increase your chances of success. Here are some tips to help you prepare for your next data science interview:

๐Ÿ‘‰ 1. Review the Fundamentals: Make sure you have a thorough understanding of the fundamentals of statistics, probability, and linear algebra. You should also be familiar with data structures, algorithms, and programming languages like Python, R, and SQL.

๐Ÿ‘‰ 2. Brush up on Machine Learning: Machine learning is a key aspect of data science. Make sure you have a solid understanding of different types of machine learning algorithms like supervised, unsupervised, and reinforcement learning.

๐Ÿ‘‰ 3. Practice Coding: Practice coding questions related to data structures, algorithms, and data science problems. You can use online resources like HackerRank, LeetCode, and Kaggle to practice.

๐Ÿ‘‰ 4. Build a Portfolio: Create a portfolio of projects that demonstrate your data science skills. This can include data cleaning, data wrangling, exploratory data analysis, and machine learning projects.

๐Ÿ‘‰ 5. Practice Communication: Data scientists are expected to effectively communicate complex technical concepts to non-technical stakeholders. Practice explaining your projects and technical concepts in simple terms.

๐Ÿ‘‰ 6. Research the Company: Research the company you are interviewing with and their industry. Understand how they use data and what data science problems they are trying to solve.

By following these tips, you can be well-prepared for your next data science interview. Good luck!
๐Ÿ‘2
Forwarded from Artificial Intelligence
๐Ÿณ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐Ÿ’ผ Want to Upgrade Your Resume in 2025 โ€” Without Spending a Dime?๐Ÿ’ซ

Whether youโ€™re in tech, marketing, business, or just looking to stand out โ€” adding high-quality certifications to your resume can make a huge difference๐Ÿ“„

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4iE6uzT

The best part? You donโ€™t need to spend any money to do it๐Ÿ’ฐ๐Ÿ“Œ
๐Ÿ‘1
๐Ÿ”… Convert PDF to docx (Word)
๐Ÿ‘6
Python Roadmap for 2025 ๐Ÿ‘†
๐Ÿ‘4
๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Whether youโ€™re a student, fresher, or professional looking to upskill โ€” Microsoft has dropped a series of completely free courses to get you started.

Learn SQL ,Power BI & More In 2025 

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/42FxnyM

Enroll For FREE & Get Certified ๐ŸŽ“
๐Ÿ‘2
โŒจ๏ธ encodeURI and decodeURI in JavaScript

It is important to learn about these functions to ensure URLs are properly formatted for use in HTTP requests. Also for safely transmitting URLs that contain special characters or spaces. and Working with APIs that require encoded URLs for queries. By using encodeURI() and decodeURI(), developers can ensure that their URIs are properly formatted and safely transmitted across different systems and platforms.
๐Ÿ‘3
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐—จ๐—ฝ๐˜€๐—ธ๐—ถ๐—น๐—น ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Whether youโ€™re a student, aspiring data analyst, software enthusiast, or just curious about AI, nowโ€™s the perfect time to dive in.

These 6 beginner-friendly and completely free AI courses from top institutions like Google, IBM, Harvard, and more

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/4d0SrTG

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ‘2
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:

1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.

2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.

3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.

4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.

5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.

6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.

7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.

8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.

9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.

10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
๐Ÿ‘7