15 Best Project Ideas for Python : π
π Beginner Level:
1. Simple Calculator
2. To-Do List
3. Number Guessing Game
4. Dice Rolling Simulator
5. Word Counter
π Intermediate Level:
6. Weather App
7. URL Shortener
8. Movie Recommender System
9. Chatbot
10. Image Caption Generator
π Advanced Level:
11. Stock Market Analysis
12. Autonomous Drone Control
13. Music Genre Classification
14. Real-Time Object Detection
15. Natural Language Processing (NLP) Sentiment Analysis
π Beginner Level:
1. Simple Calculator
2. To-Do List
3. Number Guessing Game
4. Dice Rolling Simulator
5. Word Counter
π Intermediate Level:
6. Weather App
7. URL Shortener
8. Movie Recommender System
9. Chatbot
10. Image Caption Generator
π Advanced Level:
11. Stock Market Analysis
12. Autonomous Drone Control
13. Music Genre Classification
14. Real-Time Object Detection
15. Natural Language Processing (NLP) Sentiment Analysis
π1
4 Python practical projects to do for freshers in data analytics
π§΅β¬οΈ
1οΈβ£ Exploratory Data Analysis (EDA) on a Public Dataset
Use a dataset from Kaggle or data.gov
Clean and preprocess the data
Perform statistical analysis and visualization
Draw insights and present findings
2οΈβ£ Stock Market Analysis Tool
Fetch real-time stock data using an API (e.g., yfinance)
Implement technical indicators (e.g., moving averages, RSI)
Create visualizations of stock performance
Build a simple prediction model
3οΈβ£ Social Media Sentiment Analysis
Collect tweets or Reddit posts using APIs
Preprocess text data
Perform sentiment analysis
Visualize sentiment trends over time
4οΈβ£ Customer Churn Prediction
Use a telecom or e-commerce dataset
Perform feature engineering
Build and compare multiple machine learning models
Evaluate model performance and interpret results
Hope it helps :)
π§΅β¬οΈ
1οΈβ£ Exploratory Data Analysis (EDA) on a Public Dataset
Use a dataset from Kaggle or data.gov
Clean and preprocess the data
Perform statistical analysis and visualization
Draw insights and present findings
2οΈβ£ Stock Market Analysis Tool
Fetch real-time stock data using an API (e.g., yfinance)
Implement technical indicators (e.g., moving averages, RSI)
Create visualizations of stock performance
Build a simple prediction model
3οΈβ£ Social Media Sentiment Analysis
Collect tweets or Reddit posts using APIs
Preprocess text data
Perform sentiment analysis
Visualize sentiment trends over time
4οΈβ£ Customer Churn Prediction
Use a telecom or e-commerce dataset
Perform feature engineering
Build and compare multiple machine learning models
Evaluate model performance and interpret results
Hope it helps :)
π6
FREE RESOURCES TO LEARN PYTHON
ππ
Free Udacity Course to learn Python
https://imp.i115008.net/5bK93j
Data Structure and OOPS in Python Free Courses
https://bit.ly/3t1WEBt
Free Certified Python course by Freecodecamp
https://www.freecodecamp.org/learn/scientific-computing-with-python/
Free Python Course from Google
https://developers.google.com/edu/python
Free Python Tutorials from Kaggle
https://www.kaggle.com/learn/python
Python hands-on Project
https://t.me/Programming_experts/23
Free Python Books Collection
https://cfm.ehu.es/ricardo/docs/python/Learning_Python.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
π¨βπ»Websites to Practice Python
1. http://codingbat.com/python
2. https://www.hackerrank.com/
3. https://www.hackerearth.com/practice/
4. https://projecteuler.net/archives
5. http://www.codeabbey.com/index/task_list
6. http://www.pythonchallenge.com/
Beginner's guide to Python Free Book
https://t.me/pythondevelopersindia/144
Official Documentation
https://docs.python.org/3/
Join @free4unow_backup for more free courses
ENJOY LEARNING ππ
ππ
Free Udacity Course to learn Python
https://imp.i115008.net/5bK93j
Data Structure and OOPS in Python Free Courses
https://bit.ly/3t1WEBt
Free Certified Python course by Freecodecamp
https://www.freecodecamp.org/learn/scientific-computing-with-python/
Free Python Course from Google
https://developers.google.com/edu/python
Free Python Tutorials from Kaggle
https://www.kaggle.com/learn/python
Python hands-on Project
https://t.me/Programming_experts/23
Free Python Books Collection
https://cfm.ehu.es/ricardo/docs/python/Learning_Python.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
π¨βπ»Websites to Practice Python
1. http://codingbat.com/python
2. https://www.hackerrank.com/
3. https://www.hackerearth.com/practice/
4. https://projecteuler.net/archives
5. http://www.codeabbey.com/index/task_list
6. http://www.pythonchallenge.com/
Beginner's guide to Python Free Book
https://t.me/pythondevelopersindia/144
Official Documentation
https://docs.python.org/3/
Join @free4unow_backup for more free courses
ENJOY LEARNING ππ
π8
Essentials for Acing any Data Analytics Interviews-
SQL:
1. Beginner
- Fundamentals: SELECT, WHERE, ORDER BY, GROUP BY, HAVING
- Essential JOINS: INNER, LEFT, RIGHT, FULL
- Basics of database and table creation
2. Intermediate
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries and nested queries
- Common Table Expressions with the WITH clause
- Conditional logic in queries using CASE statements
3. Advanced
- Complex JOIN techniques: self-join, non-equi join
- Window functions: OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag
- Query optimization through indexing
- Manipulating data: INSERT, UPDATE, DELETE
Python:
1. Basics
- Understanding syntax, variables, and data types: integers, floats, strings, booleans
- Control structures: if-else, loops (for, while)
- Core data structures: lists, dictionaries, sets, tuples
- Functions and error handling: lambda functions, try-except
- Using modules and packages
2. Pandas & Numpy
- DataFrames and Series: creation and manipulation
- Techniques: indexing, selecting, filtering
- Handling missing data with fillna and dropna
- Data aggregation: groupby, data summarizing
- Data merging techniques: merge, join, concatenate
3. Visualization
- Plotting basics with Matplotlib: line plots, bar plots, histograms
- Advanced visualization with Seaborn: scatter plots, box plots, pair plots
- Plot customization: sizes, labels, legends, colors
- Introduction to interactive visualizations with Plotly
Excel:
1. Basics
- Cell operations and basic formulas: SUMIFS, COUNTIFS, AVERAGEIFS
- Charts and introductory data visualization
- Data sorting and filtering, Conditional formatting
2. Intermediate
- Advanced formulas: V/XLOOKUP, INDEX-MATCH, complex IF scenarios
- Summarizing data with PivotTables and PivotCharts
- Tools for data validation and what-if analysis: Data Tables, Goal Seek
3. Advanced
- Utilizing array formulas and sophisticated functions
- Building a Data Model & using Power Pivot
- Advanced filtering, Slicers and Timelines in Pivot Tables
- Crafting dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from diverse sources
- Creating and managing dataset relationships
- Data modeling essentials: star schema, snowflake schema
2. Data Transformation
- Data cleaning and transformation with Power Query
- Advanced data shaping techniques
- Implementing calculated columns and measures with DAX
3. Data Visualization and Reporting
- Developing interactive reports and dashboards
- Visualization types: bar, line, pie charts, maps
- Report publishing and sharing, scheduling data refreshes
Statistics:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution
SQL:
1. Beginner
- Fundamentals: SELECT, WHERE, ORDER BY, GROUP BY, HAVING
- Essential JOINS: INNER, LEFT, RIGHT, FULL
- Basics of database and table creation
2. Intermediate
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries and nested queries
- Common Table Expressions with the WITH clause
- Conditional logic in queries using CASE statements
3. Advanced
- Complex JOIN techniques: self-join, non-equi join
- Window functions: OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag
- Query optimization through indexing
- Manipulating data: INSERT, UPDATE, DELETE
Python:
1. Basics
- Understanding syntax, variables, and data types: integers, floats, strings, booleans
- Control structures: if-else, loops (for, while)
- Core data structures: lists, dictionaries, sets, tuples
- Functions and error handling: lambda functions, try-except
- Using modules and packages
2. Pandas & Numpy
- DataFrames and Series: creation and manipulation
- Techniques: indexing, selecting, filtering
- Handling missing data with fillna and dropna
- Data aggregation: groupby, data summarizing
- Data merging techniques: merge, join, concatenate
3. Visualization
- Plotting basics with Matplotlib: line plots, bar plots, histograms
- Advanced visualization with Seaborn: scatter plots, box plots, pair plots
- Plot customization: sizes, labels, legends, colors
- Introduction to interactive visualizations with Plotly
Excel:
1. Basics
- Cell operations and basic formulas: SUMIFS, COUNTIFS, AVERAGEIFS
- Charts and introductory data visualization
- Data sorting and filtering, Conditional formatting
2. Intermediate
- Advanced formulas: V/XLOOKUP, INDEX-MATCH, complex IF scenarios
- Summarizing data with PivotTables and PivotCharts
- Tools for data validation and what-if analysis: Data Tables, Goal Seek
3. Advanced
- Utilizing array formulas and sophisticated functions
- Building a Data Model & using Power Pivot
- Advanced filtering, Slicers and Timelines in Pivot Tables
- Crafting dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from diverse sources
- Creating and managing dataset relationships
- Data modeling essentials: star schema, snowflake schema
2. Data Transformation
- Data cleaning and transformation with Power Query
- Advanced data shaping techniques
- Implementing calculated columns and measures with DAX
3. Data Visualization and Reporting
- Developing interactive reports and dashboards
- Visualization types: bar, line, pie charts, maps
- Report publishing and sharing, scheduling data refreshes
Statistics:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution
π4
Prepare for GATE: The Right Time is NOW!
GeeksforGeeks brings you everything you need to crack GATE 2026 β 900+ live hours, 300+ recorded sessions, and expert mentorship to keep you on track.
Whatβs inside?
β Live & recorded classes with Indiaβs top educators
β 200+ mock tests to track your progress
β Study materials - PYQs, workbooks, formula book & more
β 1:1 mentorship & AI doubt resolution for instant support
β Interview prep for IITs & PSUs to help you land opportunities
Learn from Experts Like:
Satish Kumar Yadav β Trained 20K+ students
Dr. Khaleel β Ph.D. in CS, 29+ years of experience
Chandan Jha β Ex-ISRO, AIR 23 in GATE
Vijay Kumar Agarwal β M.Tech (NIT), 13+ years of experience
Sakshi Singhal β IIT Roorkee, AIR 56 CSIR-NET
Shailendra Singh β GATE 99.24 percentile
Devasane Mallesham β IIT Bombay, 13+ years of experience
Use code UPSKILL30 to get an extra 30% OFF (Limited time only)
π Enroll for a free counseling session now: https://gfgcdn.com/tu/UI2/
GeeksforGeeks brings you everything you need to crack GATE 2026 β 900+ live hours, 300+ recorded sessions, and expert mentorship to keep you on track.
Whatβs inside?
β Live & recorded classes with Indiaβs top educators
β 200+ mock tests to track your progress
β Study materials - PYQs, workbooks, formula book & more
β 1:1 mentorship & AI doubt resolution for instant support
β Interview prep for IITs & PSUs to help you land opportunities
Learn from Experts Like:
Satish Kumar Yadav β Trained 20K+ students
Dr. Khaleel β Ph.D. in CS, 29+ years of experience
Chandan Jha β Ex-ISRO, AIR 23 in GATE
Vijay Kumar Agarwal β M.Tech (NIT), 13+ years of experience
Sakshi Singhal β IIT Roorkee, AIR 56 CSIR-NET
Shailendra Singh β GATE 99.24 percentile
Devasane Mallesham β IIT Bombay, 13+ years of experience
Use code UPSKILL30 to get an extra 30% OFF (Limited time only)
π Enroll for a free counseling session now: https://gfgcdn.com/tu/UI2/
π4