Python project-based interview questions for a data analyst role, along with tips and sample answers [Part-1]
1. Data Cleaning and Preprocessing
- Question: Can you walk me through the data cleaning process you followed in a Python-based project?
- Answer: In my project, I used Pandas for data manipulation. First, I handled missing values by imputing them with the median for numerical columns and the most frequent value for categorical columns using
- Tip: Mention specific functions you used, like
2. Exploratory Data Analysis (EDA)
- Question: How did you perform EDA in a Python project? What tools did you use?
- Answer: I used Pandas for data exploration, generating summary statistics with
- Tip: Focus on how you used visualization tools like Matplotlib, Seaborn, or Plotly, and mention any specific insights you gained from EDA (e.g., data distributions, relationships, outliers).
3. Pandas Operations
- Question: Can you explain a situation where you had to manipulate a large dataset in Python using Pandas?
- Answer: In a project, I worked with a dataset containing over a million rows. I optimized my operations by using vectorized operations instead of Python loops. For example, I used
- Tip: Emphasize your understanding of efficient data manipulation with Pandas, mentioning functions like
4. Data Visualization
- Question: How do you create visualizations in Python to communicate insights from data?
- Answer: I primarily use Matplotlib and Seaborn for static plots and Plotly for interactive dashboards. For example, in one project, I used
- Tip: Mention the specific plots you created and how you customized them (e.g., adding labels, titles, adjusting axis scales). Highlight the importance of clear communication through visualization.
1. Data Cleaning and Preprocessing
- Question: Can you walk me through the data cleaning process you followed in a Python-based project?
- Answer: In my project, I used Pandas for data manipulation. First, I handled missing values by imputing them with the median for numerical columns and the most frequent value for categorical columns using
fillna()
. I also removed outliers by setting a threshold based on the interquartile range (IQR). Additionally, I standardized numerical columns using StandardScaler from Scikit-learn and performed one-hot encoding for categorical variables using Pandas' get_dummies()
function.- Tip: Mention specific functions you used, like
dropna()
, fillna()
, apply()
, or replace()
, and explain your rationale for selecting each method.2. Exploratory Data Analysis (EDA)
- Question: How did you perform EDA in a Python project? What tools did you use?
- Answer: I used Pandas for data exploration, generating summary statistics with
describe()
and checking for correlations with corr()
. For visualization, I used Matplotlib and Seaborn to create histograms, scatter plots, and box plots. For instance, I used sns.pairplot()
to visually assess relationships between numerical features, which helped me detect potential multicollinearity. Additionally, I applied pivot tables to analyze key metrics by different categorical variables.- Tip: Focus on how you used visualization tools like Matplotlib, Seaborn, or Plotly, and mention any specific insights you gained from EDA (e.g., data distributions, relationships, outliers).
3. Pandas Operations
- Question: Can you explain a situation where you had to manipulate a large dataset in Python using Pandas?
- Answer: In a project, I worked with a dataset containing over a million rows. I optimized my operations by using vectorized operations instead of Python loops. For example, I used
apply()
with a lambda function to transform a column, and groupby()
to aggregate data by multiple dimensions efficiently. I also leveraged merge()
to join datasets on common keys.- Tip: Emphasize your understanding of efficient data manipulation with Pandas, mentioning functions like
groupby()
, merge()
, concat()
, or pivot()
.4. Data Visualization
- Question: How do you create visualizations in Python to communicate insights from data?
- Answer: I primarily use Matplotlib and Seaborn for static plots and Plotly for interactive dashboards. For example, in one project, I used
sns.heatmap()
to visualize the correlation matrix and sns.barplot()
for comparing categorical data. For time-series data, I used Matplotlib to create line plots that displayed trends over time. When presenting the results, I tailored visualizations to the audience, ensuring clarity and simplicity.- Tip: Mention the specific plots you created and how you customized them (e.g., adding labels, titles, adjusting axis scales). Highlight the importance of clear communication through visualization.
๐5
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.me/sqlproject
ENJOY LEARNING ๐๐
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.me/sqlproject
ENJOY LEARNING ๐๐
๐5
โ
Learn Trending Skills in 2025 ๐ฐ
1. Web Development โ
โ๏ธ https://t.me/webdevcoursefree
2. CSS โ
โ๏ธ http://css-tricks.com
3. JavaScript โ
โ๏ธ http://t.me/javascript_courses
4. React โ
โ๏ธ http://react-tutorial.app
5. Tailwind CSS โ
โ๏ธ http://scrimba.com
6. Data Science โ
โ๏ธ https://t.me/datasciencefun
7. Python โ
โ๏ธ http://pythontutorial.net
8. SQL โ
โ๏ธ https://t.me/sqlanalyst
โ๏ธ https://stratascratch.com/?via=free
9. Git and GitHub โ
โ๏ธ http://GitFluence.com
10. Blockchain โ
โ๏ธ https://t.me/Bitcoin_Crypto_Web
11. Mongo DB โ
โ๏ธ http://mongodb.com
12. Node JS โ
โ๏ธ http://nodejsera.com
13. English Speaking โ
โ๏ธ https://t.me/englishlearnerspro
14. C#โ
โ๏ธhttps://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excelโ
โ๏ธ https://t.me/excel_analyst
16. Generative AIโ
โ๏ธ https://t.me/generativeai_gpt
17. App Development โ
โ๏ธ https://t.me/appsuser
18. Power BI โ
โ๏ธ https://t.me/powerbi_analyst
19. Tableau โ
โ๏ธ https://www.tableau.com/learn/training
20. Machine Learning โ
โ๏ธ http://developers.google.com/machine-learning/crash-course
21. Artificial intelligence โ
โ๏ธ http://t.me/machinelearning_deeplearning/
22. Data Analytics โ
โ๏ธ https://medium.com/@data_analyst
โ๏ธ https://www.linkedin.com/company/sql-analysts
23. Java โ
โ๏ธ https://t.me/Java_Programming_Notes
โ๏ธ http://learn.microsoft.com/shows/java-for-beginners/
24. C/C++ โ
โ๏ธ http://imp.i115008.net/kjoq9V
โ๏ธ https://docs.microsoft.com/en-us/cpp/c-language/?view=msvc-170&viewFallbackFrom=vs-2019
25. Data Structures โ
โ๏ธ https://leetcode.com/study-plan/data-structure/
26. Cybersecurity โ
โ๏ธ https://t.me/EthicalHackingToday
27. Linux โ
โ๏ธ https://bit.ly/3KhPdf1
โ๏ธ https://training.linuxfoundation.org/resources/
28. Typescript โ
โ๏ธ http://learn.microsoft.com/training/paths/build-javascript-applications-typescript/
29. Deep Learning โ
โ๏ธ http://introtodeeplearning.com
30. Compiler Design โ
โ๏ธ http://online.stanford.edu/courses/soe-ycscs1-compilers
31. DSA โ
โ๏ธ http://techdevguide.withgoogle.com/paths/data-structures-and-algorithms/
32. Prompt Engineering โ
โ๏ธ https://www.promptingguide.ai/
โ๏ธ https://t.me/aiindi
Join @free4unow_backup for more free courses
Like for more โค๏ธ
ENJOY LEARNING๐๐
1. Web Development โ
โ๏ธ https://t.me/webdevcoursefree
2. CSS โ
โ๏ธ http://css-tricks.com
3. JavaScript โ
โ๏ธ http://t.me/javascript_courses
4. React โ
โ๏ธ http://react-tutorial.app
5. Tailwind CSS โ
โ๏ธ http://scrimba.com
6. Data Science โ
โ๏ธ https://t.me/datasciencefun
7. Python โ
โ๏ธ http://pythontutorial.net
8. SQL โ
โ๏ธ https://t.me/sqlanalyst
โ๏ธ https://stratascratch.com/?via=free
9. Git and GitHub โ
โ๏ธ http://GitFluence.com
10. Blockchain โ
โ๏ธ https://t.me/Bitcoin_Crypto_Web
11. Mongo DB โ
โ๏ธ http://mongodb.com
12. Node JS โ
โ๏ธ http://nodejsera.com
13. English Speaking โ
โ๏ธ https://t.me/englishlearnerspro
14. C#โ
โ๏ธhttps://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excelโ
โ๏ธ https://t.me/excel_analyst
16. Generative AIโ
โ๏ธ https://t.me/generativeai_gpt
17. App Development โ
โ๏ธ https://t.me/appsuser
18. Power BI โ
โ๏ธ https://t.me/powerbi_analyst
19. Tableau โ
โ๏ธ https://www.tableau.com/learn/training
20. Machine Learning โ
โ๏ธ http://developers.google.com/machine-learning/crash-course
21. Artificial intelligence โ
โ๏ธ http://t.me/machinelearning_deeplearning/
22. Data Analytics โ
โ๏ธ https://medium.com/@data_analyst
โ๏ธ https://www.linkedin.com/company/sql-analysts
23. Java โ
โ๏ธ https://t.me/Java_Programming_Notes
โ๏ธ http://learn.microsoft.com/shows/java-for-beginners/
24. C/C++ โ
โ๏ธ http://imp.i115008.net/kjoq9V
โ๏ธ https://docs.microsoft.com/en-us/cpp/c-language/?view=msvc-170&viewFallbackFrom=vs-2019
25. Data Structures โ
โ๏ธ https://leetcode.com/study-plan/data-structure/
26. Cybersecurity โ
โ๏ธ https://t.me/EthicalHackingToday
27. Linux โ
โ๏ธ https://bit.ly/3KhPdf1
โ๏ธ https://training.linuxfoundation.org/resources/
28. Typescript โ
โ๏ธ http://learn.microsoft.com/training/paths/build-javascript-applications-typescript/
29. Deep Learning โ
โ๏ธ http://introtodeeplearning.com
30. Compiler Design โ
โ๏ธ http://online.stanford.edu/courses/soe-ycscs1-compilers
31. DSA โ
โ๏ธ http://techdevguide.withgoogle.com/paths/data-structures-and-algorithms/
32. Prompt Engineering โ
โ๏ธ https://www.promptingguide.ai/
โ๏ธ https://t.me/aiindi
Join @free4unow_backup for more free courses
Like for more โค๏ธ
ENJOY LEARNING๐๐
๐8
Many people pay too much to learn Python, but my mission is to break down barriers. I have shared complete learning series to learn Python from scratch.
Here are the links to the Python series
Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548
Part-1: https://t.me/sqlspecialist/562
Part-2: https://t.me/sqlspecialist/564
Part-3: https://t.me/sqlspecialist/565
Part-4: https://t.me/sqlspecialist/566
Part-5: https://t.me/sqlspecialist/568
Part-6: https://t.me/sqlspecialist/570
Part-7: https://t.me/sqlspecialist/571
Part-8: https://t.me/sqlspecialist/572
Part-9: https://t.me/sqlspecialist/578
Part-10: https://t.me/sqlspecialist/577
Part-11: https://t.me/sqlspecialist/578
Part-12:
https://t.me/sqlspecialist/581
Part-13: https://t.me/sqlspecialist/583
Part-14: https://t.me/sqlspecialist/584
Part-15: https://t.me/sqlspecialist/585
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523
Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588
I'll continue with learning series on Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
Here are the links to the Python series
Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548
Part-1: https://t.me/sqlspecialist/562
Part-2: https://t.me/sqlspecialist/564
Part-3: https://t.me/sqlspecialist/565
Part-4: https://t.me/sqlspecialist/566
Part-5: https://t.me/sqlspecialist/568
Part-6: https://t.me/sqlspecialist/570
Part-7: https://t.me/sqlspecialist/571
Part-8: https://t.me/sqlspecialist/572
Part-9: https://t.me/sqlspecialist/578
Part-10: https://t.me/sqlspecialist/577
Part-11: https://t.me/sqlspecialist/578
Part-12:
https://t.me/sqlspecialist/581
Part-13: https://t.me/sqlspecialist/583
Part-14: https://t.me/sqlspecialist/584
Part-15: https://t.me/sqlspecialist/585
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523
Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588
I'll continue with learning series on Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
๐5