Python Projects & Free Books
38K subscribers
596 photos
93 files
305 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
Many people pay too much to learn Python, but my mission is to break down barriers. I have shared complete learning series to learn Python from scratch.

Here are the links to the Python series

Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548

Part-1: https://t.me/sqlspecialist/562

Part-2: https://t.me/sqlspecialist/564

Part-3: https://t.me/sqlspecialist/565

Part-4: https://t.me/sqlspecialist/566

Part-5: https://t.me/sqlspecialist/568

Part-6: https://t.me/sqlspecialist/570

Part-7: https://t.me/sqlspecialist/571

Part-8: https://t.me/sqlspecialist/572

Part-9: https://t.me/sqlspecialist/578

Part-10: https://t.me/sqlspecialist/577

Part-11: https://t.me/sqlspecialist/578

Part-12:
https://t.me/sqlspecialist/581

Part-13: https://t.me/sqlspecialist/583

Part-14: https://t.me/sqlspecialist/584

Part-15: https://t.me/sqlspecialist/585

I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.

But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.

Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523

Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588

I'll continue with learning series on Excel & Tableau.

Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.

Hope it helps :)
๐Ÿ‘11
Here is an A-Z list of essential programming terms:

1. Array: A data structure that stores a collection of elements of the same type in contiguous memory locations.

2. Boolean: A data type that represents true or false values.

3. Conditional Statement: A statement that executes different code based on a condition.

4. Debugging: The process of identifying and fixing errors or bugs in a program.

5. Exception: An event that occurs during the execution of a program that disrupts the normal flow of instructions.

6. Function: A block of code that performs a specific task and can be called multiple times in a program.

7. GUI (Graphical User Interface): A visual way for users to interact with a computer program using graphical elements like windows, buttons, and menus.

8. HTML (Hypertext Markup Language): The standard markup language used to create web pages.

9. Integer: A data type that represents whole numbers without any fractional part.

10. JSON (JavaScript Object Notation): A lightweight data interchange format commonly used for transmitting data between a server and a web application.

11. Loop: A programming construct that allows repeating a block of code multiple times.

12. Method: A function that is associated with an object in object-oriented programming.

13. Null: A special value that represents the absence of a value.

14. Object-Oriented Programming (OOP): A programming paradigm based on the concept of "objects" that encapsulate data and behavior.

15. Pointer: A variable that stores the memory address of another variable.

16. Queue: A data structure that follows the First-In-First-Out (FIFO) principle.

17. Recursion: A programming technique where a function calls itself to solve a problem.

18. String: A data type that represents a sequence of characters.

19. Tuple: An ordered collection of elements, similar to an array but immutable.

20. Variable: A named storage location in memory that holds a value.

21. While Loop: A loop that repeatedly executes a block of code as long as a specified condition is true.

Best Programming Resources: https://topmate.io/coding/898340

Join for more: https://t.me/programming_guide

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ (๐—ก๐—ผ ๐—ฆ๐˜๐—ฟ๐—ถ๐—ป๐—ด๐˜€ ๐—”๐˜๐˜๐—ฎ๐—ฐ๐—ต๐—ฒ๐—ฑ)

๐—ก๐—ผ ๐—ณ๐—ฎ๐—ป๐—ฐ๐˜† ๐—ฐ๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€, ๐—ป๐—ผ ๐—ฐ๐—ผ๐—ป๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐˜€, ๐—ท๐˜‚๐˜€๐˜ ๐—ฝ๐˜‚๐—ฟ๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด.

๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜:

1๏ธโƒฃ Python Programming for Data Science โ†’ Harvardโ€™s CS50P
The best intro to Python for absolute beginners:
โ†ฌ Covers loops, data structures, and practical exercises.
โ†ฌ Designed to help you build foundational coding skills.

Link: https://cs50.harvard.edu/python/

https://t.me/datasciencefun

2๏ธโƒฃ Statistics & Probability โ†’ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โ†ฌ Clear, beginner-friendly videos.
โ†ฌ Exercises to test your skills.

Link: https://www.khanacademy.org/math/statistics-probability

https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O

3๏ธโƒฃ Linear Algebra for Data Science โ†’ 3Blue1Brown
โ†ฌ Learn about matrices, vectors, and transformations.
โ†ฌ Essential for machine learning models.

Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr

4๏ธโƒฃ SQL Basics โ†’ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โ†ฌ Writing queries, joins, and filtering data.
โ†ฌ Real-world datasets to practice.

Link: https://mode.com/sql-tutorial

https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

5๏ธโƒฃ Data Visualization โ†’ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โ†ฌ Covers Matplotlib, Seaborn, and Plotly.
โ†ฌ Step-by-step projects included.

Link: https://www.youtube.com/watch?v=JLzTJhC2DZg

https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34

6๏ธโƒฃ Machine Learning Basics โ†’ Googleโ€™s Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โ†ฌ Learn supervised and unsupervised learning.
โ†ฌ Hands-on coding with TensorFlow.

Link: https://developers.google.com/machine-learning/crash-course

7๏ธโƒฃ Deep Learning โ†’ Fast.aiโ€™s Free Course
Fast.ai makes deep learning easy and accessible:
โ†ฌ Build neural networks with PyTorch.
โ†ฌ Learn by coding real projects.

Link: https://course.fast.ai/

8๏ธโƒฃ Data Science Projects โ†’ Kaggle
โ†ฌ Compete in challenges to practice your skills.
โ†ฌ Great way to build your portfolio.

Link: https://www.kaggle.com/
๐Ÿ‘9
Here are 10 project ideas to work on for Data Analytics

1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.

And this is how you can work on

Hereโ€™s a compact list of free resources for working on data analytics projects:

1. Datasets
โ€ข Kaggle Datasets: Wide range of datasets and community discussions.
โ€ข UCI Machine Learning Repository: Great for educational datasets.
โ€ข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โ€ข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โ€ข 365DataScience: Data Science & AI Related Courses
3. Tools
โ€ข Google Colab: Free Jupyter Notebooks for Python coding.
โ€ข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โ€ข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โ€ข Data Analytics on Medium: Project guides and tutorials.

ENJOY LEARNING โœ…๏ธโœ…๏ธ

#datascienceprojects
๐Ÿ‘6
๐—ง๐—ผ๐—ฝ ๐Ÿญ๐Ÿฑ ๐—š๐—ฎ๐—บ๐—ฒ ๐——๐—ฒ๐˜ƒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ๐˜€๐Ÿ‘พ๐ŸŽฎ

1. C++: AAA games (Unreal)
2. C#: Unity, indie game
3. JavaScript: Web game
4. Java: Android game
5. Python: Prototypes (Pygame)
6. Lua: Scripting (Roblox)
7. Swift: iOS games
8. Objective-C: Legacy iOS/macOS
9. Rust: System-level (Amethyst)
10. Go: Multiplayer servers
11. HTML5 + JS: Simple 2D games
12. Kotlin: Android apps
13. Haxe: Cross-platform 2D
14. TypeScript: Scalable web games
15. Ruby: Lightweight 2D games
๐Ÿ‘2
Python Projects
๐Ÿ‘8