Python Projects & Free Books
38K subscribers
604 photos
93 files
305 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
Applications of Deep Learning
๐Ÿ‘3
๐Ÿฑ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ โ€“ ๐—ช๐—ถ๐˜๐—ต ๐—™๐˜‚๐—น๐—น ๐—ง๐˜‚๐˜๐—ผ๐—ฟ๐—ถ๐—ฎ๐—น๐˜€!๐Ÿ˜

Are you ready to build real-world tech projects that donโ€™t just look good on your resume, but actually teach you practical, job-ready skills?๐Ÿง‘โ€๐Ÿ’ป๐Ÿ“Œ

Hereโ€™s a curated list of 5 high-value development tutorials โ€” covering everything from full-stack development and real-time chat apps to AI form builders and reinforcement learningโœจ๏ธ๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3UtCSLO

Theyโ€™re real, portfolio-worthy projects you can start todayโœ…๏ธ
๐Ÿ‘1
Writing Python Lists
๐Ÿ‘3
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—ฃ๐—น๐—ฎ๐˜†๐—น๐—ถ๐˜€๐˜๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—ช๐—ถ๐—น๐—น ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐—ค๐˜‚๐—ฒ๐—ฟ๐˜† ๐—ฃ๐—ฟ๐—ผ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Still stuck Googling โ€œWhat is SQL?โ€ every time you start a new project?๐Ÿ’ต

Youโ€™re not alone. Many beginners bounce between tutorials without ever feeling confident writing SQL queries on their own.๐Ÿ‘จโ€๐Ÿ’ปโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4f1F6LU

Letโ€™s dive into the ones that are actually worth your timeโœ…๏ธ
๐Ÿ‘2
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! ๐Ÿ“Œ

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, itโ€™s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘1
๐ŸŽ“๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ! ๐Ÿš€

Upgrade your skills and earn industry-recognized certificates โ€” 100% FREE!

โœ… Big Data Analytics โ€“ https://pdlink.in/4nzRoza

โœ… AI & ML โ€“ https://pdlink.in/401SWry

โœ… Cloud Computing โ€“ https://pdlink.in/3U2sMkR

โœ… Cyber Security โ€“ https://pdlink.in/4nzQaDQ

โœ… Other Tech Courses โ€“ https://pdlink.in/4lIN673

๐ŸŽฏ Enroll Now & Get Certified for FREE
Understanding Popular ML Algorithms:

1๏ธโƒฃ Linear Regression: Think of it as drawing a straight line through data points to predict future outcomes.

2๏ธโƒฃ Logistic Regression: Like a yes/no machine - it predicts the likelihood of something happening or not.

3๏ธโƒฃ Decision Trees: Imagine making decisions by answering yes/no questions, leading to a conclusion.

4๏ธโƒฃ Random Forest: It's like a group of decision trees working together, making more accurate predictions.

5๏ธโƒฃ Support Vector Machines (SVM): Visualize drawing lines to separate different types of things, like cats and dogs.

6๏ธโƒฃ K-Nearest Neighbors (KNN): Friends sticking together - if most of your friends like something, chances are you'll like it too!

7๏ธโƒฃ Neural Networks: Inspired by the brain, they learn patterns from examples - perfect for recognizing faces or understanding speech.

8๏ธโƒฃ K-Means Clustering: Imagine sorting your socks by color without knowing how many colors there are - it groups similar things.

9๏ธโƒฃ Principal Component Analysis (PCA): Simplifies complex data by focusing on what's important, like summarizing a long story with just a few key points.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐˜๐—ต๐—ฒ ๐— ๐—ผ๐˜€๐˜ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€๐Ÿ˜

๐Ÿš€ Want to future-proof your career without spending a single rupee?๐Ÿ’ต

These 6 free online courses from top institutions like Google, Harvard, IBM, Stanford, and Cisco will help you master high-demand tech skills in 2025 โ€” from Data Analytics to Machine Learning๐Ÿ“Š๐Ÿง‘โ€๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4fbDejW

Each course is beginner-friendly, comes with certification, and helps you build your resume or switch careersโœ…๏ธ
๐Ÿ‘1
๐Ÿš€ Microsoft is offering some FREE courses ๐Ÿš€


1๏ธโƒฃ AI for beginners
Check this out ๐Ÿ‘‡
http://microsoft.github.io/AI-For-Beginners


2๏ธโƒฃ IOT
Check this out ๐Ÿ‘‡
https://microsoft.github.io/IoT-For-Beginners


3๏ธโƒฃ Machine Learning
Check this out๐Ÿ‘‡
http://microsoft.github.io/ML-For-Beginners/#/


4๏ธโƒฃ Data Science
Check this out๐Ÿ‘‡
http://microsoft.github.io/Data-Science-For-Beginners/#/

Free Coding Courses ๐Ÿ‘‡
https://t.me/programming_guide

Few more courses โœ…

๐Ÿญ.๐——๐—ฎ๐˜๐—ฎ ๐—™๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐˜€
https://learn.microsoft.com/en-us/training/paths/azure-data-fundamentals-explore-non-relational-data/

๐Ÿฎ.๐—ฆ๐—พ๐—น ๐—™๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐˜€
https://learn.microsoft.com/en-us/training/paths/azure-sql-fundamentals/

๐Ÿฏ.๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ
https://learn.microsoft.com/en-us/training/paths/create-use-analvtics-reports-power-bi/

๐Ÿฐ.๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ ๐—ฐ๐—ผ๐˜€๐—บ๐—ผ๐˜€ ๐——๐—•
https://learn.microsoft.com/en-us/training/paths/create-use-analytics-reports-power-bi/

๐Ÿฑ.๐—”๐—œ ๐—ณ๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐˜€
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
๐Ÿ‘1
๐Ÿš€๐—ง๐—ผ๐—ฝ ๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ-๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to boost your tech career? Learn Python for FREE with Google-certified courses!
Perfect for beginnersโ€”no expensive bootcamps needed.

๐Ÿ”ฅ Learn Python for AI, Data, Automation & More!

๐Ÿ“๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ก๐—ผ๐˜„๐Ÿ‘‡

https://pdlink.in/42okGqG

โœ… Future You Will Thank You!
๐Ÿ‘1
Python Roadmap for 2025 ๐Ÿ‘†
๐Ÿ‘1
๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—”๐—ง๐—” ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐˜€๐—ต๐—ถ๐—ฝ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€ (๐—ช๐—ถ๐˜๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ)๐Ÿ˜

๐ŸŽฏ Gain Real-World Data Analytics Experience with TATA โ€“ 100% Free!๐Ÿ“Šโœจ๏ธ

Want to boost your resume and build real-world experience as a beginner? This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ€” no experience required!๐Ÿง‘โ€๐ŸŽ“๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FyjDgp

No application or selection process โ€” just sign up and start learning instantly!โœ…๏ธ
๐Ÿ‘1
Machine Learning isn't easy!

Itโ€™s the field that powers intelligent systems and predictive models.

To truly master Machine Learning, focus on these key areas:

0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.


1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.


2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.


3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).


4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.


5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.


6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.


7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.


8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.


9. Staying Updated with New Techniques: Machine learning evolves rapidlyโ€”keep up with emerging models, techniques, and research.



Machine learning is about learning from data and improving models over time.

๐Ÿ’ก Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.

โณ With time, practice, and persistence, youโ€™ll develop the expertise to create systems that learn, predict, and adapt.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#datascience
๐Ÿ‘1
Forwarded from Artificial Intelligence
๐Ÿณ ๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐Ÿ˜

If youโ€™re serious about becoming a data analyst, thereโ€™s no skipping SQL. Itโ€™s not just another technical skill โ€” itโ€™s the core language for data analytics.๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44S3Xi5

This guide covers 7 key SQL concepts that every beginner must learnโœ…๏ธ
The Only SQL You Actually Need For Your First Job (Data Analytics)

The Learning Trap: What Most Beginners Fall Into

When starting out, it's common to feel like you need to master every possible SQL concept. You binge YouTube videos, tutorials, and courses, yet still feel lost in interviews or when given a real dataset.

Common traps:

- Complex subqueries

- Advanced CTEs

- Recursive queries

- 100+ tutorials watched

- 0 practical experience


Reality Check: What You'll Actually Use 75% of the Time

Most data analytics roles (especially entry-level) require clarity, speed, and confidence with core SQL operations. Hereโ€™s what covers most daily work:

1. SELECT, FROM, WHERE โ€” The Foundation

SELECT name, age
FROM employees
WHERE department = 'Finance';

This is how almost every query begins. Whether exploring a dataset or building a dashboard, these are always in use.

2. JOINs โ€” Combining Data From Multiple Tables

SELECT e.name, d.department_name
FROM employees e
JOIN departments d ON e.department_id = d.id;

Youโ€™ll often join tables like employee data with department, customer orders with payments, etc.

3. GROUP BY โ€” Summarizing Data

SELECT department, COUNT(*) AS employee_count
FROM employees
GROUP BY department;

Used to get summaries by categories like sales per region or users by plan.

4. ORDER BY โ€” Sorting Results

SELECT name, salary
FROM employees
ORDER BY salary DESC;

Helps sort output for dashboards or reports.

5. Aggregations โ€” Simple But Powerful

Common functions: COUNT(), SUM(), AVG(), MIN(), MAX()

SELECT AVG(salary)
FROM employees
WHERE department = 'IT';

Gives quick insights like average deal size or total revenue.

6. ROW_NUMBER() โ€” Adding Row Logic

SELECT *
FROM (
SELECT *, ROW_NUMBER() OVER(PARTITION BY customer_id ORDER BY order_date DESC) as rn
FROM orders
) sub
WHERE rn = 1;

Used for deduplication, rankings, or selecting the latest record per group.

Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

React โค๏ธ for more
๐—”๐—ฐ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฏ๐Ÿฌ ๐— ๐—ผ๐˜€๐˜-๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€! ๐Ÿ˜

๐Ÿคฆ๐Ÿปโ€โ™€๏ธStruggling with SQL interviews? Not anymore!๐Ÿ“

SQL interviews can be challenging, but preparation is the key to success. Whether youโ€™re aiming for a data analytics role or just brushing up, this resource has got your back!๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4olhd6z

Letโ€™s crack that interview together!โœ…๏ธ
๐Ÿ‘1
Build Machine Learning Projects in Python โœ…
๐Ÿ‘1