Step-by-Step Roadmap to Learn Data Science in 2025:
Step 1: Understand the Role
A data scientist in 2025 is expected to:
Analyze data to extract insights
Build predictive models using ML
Communicate findings to stakeholders
Work with large datasets in cloud environments
Step 2: Master the Prerequisite Skills
A. Programming
Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn
R (optional but helpful for statistical analysis)
SQL: Strong command over data extraction and transformation
B. Math & Stats
Probability, Descriptive & Inferential Statistics
Linear Algebra & Calculus (only what's necessary for ML)
Hypothesis testing
Step 3: Learn Data Handling
Data Cleaning, Preprocessing
Exploratory Data Analysis (EDA)
Feature Engineering
Tools: Python (pandas), Excel, SQL
Step 4: Master Machine Learning
Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost
Unsupervised Learning: K-Means, Hierarchical Clustering, PCA
Deep Learning (optional): Use TensorFlow or PyTorch
Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE
Step 5: Learn Data Visualization & Storytelling
Python (matplotlib, seaborn, plotly)
Power BI / Tableau
Communicating insights clearly is as important as modeling
Step 6: Use Real Datasets & Projects
Work on projects using Kaggle, UCI, or public APIs
Examples:
Customer churn prediction
Sales forecasting
Sentiment analysis
Fraud detection
Step 7: Understand Cloud & MLOps (2025+ Skills)
Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure
MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics
Step 8: Build Portfolio & Resume
Create GitHub repos with well-documented code
Post projects and blogs on Medium or LinkedIn
Prepare a data science-specific resume
Step 9: Apply Smartly
Focus on job roles like: Data Scientist, ML Engineer, Data Analyst โ DS
Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.
Practice data science interviews: case studies, ML concepts, SQL + Python coding
Step 10: Keep Learning & Updating
Follow top newsletters: Data Elixir, Towards Data Science
Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI
Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)
Free Resources to learn Data Science
Kaggle Courses: https://www.kaggle.com/learn
CS50 AI by Harvard: https://cs50.harvard.edu/ai/
Fast.ai: https://course.fast.ai/
Google ML Crash Course: https://developers.google.com/machine-learning/crash-course
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Data Science Books: https://t.me/datalemur
React โค๏ธ for more
Step 1: Understand the Role
A data scientist in 2025 is expected to:
Analyze data to extract insights
Build predictive models using ML
Communicate findings to stakeholders
Work with large datasets in cloud environments
Step 2: Master the Prerequisite Skills
A. Programming
Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn
R (optional but helpful for statistical analysis)
SQL: Strong command over data extraction and transformation
B. Math & Stats
Probability, Descriptive & Inferential Statistics
Linear Algebra & Calculus (only what's necessary for ML)
Hypothesis testing
Step 3: Learn Data Handling
Data Cleaning, Preprocessing
Exploratory Data Analysis (EDA)
Feature Engineering
Tools: Python (pandas), Excel, SQL
Step 4: Master Machine Learning
Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost
Unsupervised Learning: K-Means, Hierarchical Clustering, PCA
Deep Learning (optional): Use TensorFlow or PyTorch
Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE
Step 5: Learn Data Visualization & Storytelling
Python (matplotlib, seaborn, plotly)
Power BI / Tableau
Communicating insights clearly is as important as modeling
Step 6: Use Real Datasets & Projects
Work on projects using Kaggle, UCI, or public APIs
Examples:
Customer churn prediction
Sales forecasting
Sentiment analysis
Fraud detection
Step 7: Understand Cloud & MLOps (2025+ Skills)
Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure
MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics
Step 8: Build Portfolio & Resume
Create GitHub repos with well-documented code
Post projects and blogs on Medium or LinkedIn
Prepare a data science-specific resume
Step 9: Apply Smartly
Focus on job roles like: Data Scientist, ML Engineer, Data Analyst โ DS
Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.
Practice data science interviews: case studies, ML concepts, SQL + Python coding
Step 10: Keep Learning & Updating
Follow top newsletters: Data Elixir, Towards Data Science
Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI
Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)
Free Resources to learn Data Science
Kaggle Courses: https://www.kaggle.com/learn
CS50 AI by Harvard: https://cs50.harvard.edu/ai/
Fast.ai: https://course.fast.ai/
Google ML Crash Course: https://developers.google.com/machine-learning/crash-course
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Data Science Books: https://t.me/datalemur
React โค๏ธ for more
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐
Dreaming of a career in Data Analytics but donโt know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified โ ๏ธ
Dreaming of a career in Data Analytics but donโt know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified โ ๏ธ
๐ Python Cheatsheet: Master the Foundations & Beyond
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
๐5
๐ Python Cheatsheet: Master the Foundations & Beyond
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
๐1
Forwarded from Artificial Intelligence
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ถ๐ฐ๐ธ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
๐ You donโt need to break the bank to break into AI!๐ชฉ
If youโve been searching for beginner-friendly, certified AI learningโGoogle Cloud has you covered๐ค๐จโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SZQRIU
๐All taught by industry-leading instructorsโ ๏ธ
๐ You donโt need to break the bank to break into AI!๐ชฉ
If youโve been searching for beginner-friendly, certified AI learningโGoogle Cloud has you covered๐ค๐จโ๐ป
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SZQRIU
๐All taught by industry-leading instructorsโ ๏ธ
One day or Day one. You decide.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
Forwarded from Artificial Intelligence
๐ง๐ผ๐ฝ ๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐ด๐ด๐น๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ถ๐๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐๐บ๐ฝ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Want to break into Data Science but not sure where to start?๐
These free Kaggle micro-courses are the perfect launchpad โ beginner-friendly, self-paced, and yes, they come with certifications!๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l164FN
No subscription. No hidden fees. Just pure learning from a trusted platformโ ๏ธ
Want to break into Data Science but not sure where to start?๐
These free Kaggle micro-courses are the perfect launchpad โ beginner-friendly, self-paced, and yes, they come with certifications!๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l164FN
No subscription. No hidden fees. Just pure learning from a trusted platformโ ๏ธ
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ + ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐๐๐๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
Ready to upgrade your career without spending a dime?โจ๏ธ
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!๐ฒ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications๐โ ๏ธ
Ready to upgrade your career without spending a dime?โจ๏ธ
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!๐ฒ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications๐โ ๏ธ
Python for Data Analysis: Must-Know Libraries ๐๐
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
๐ฅ Essential Python Libraries for Data Analysis:
โ Pandas โ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
๐ Example: Loading a CSV file and displaying the first 5 rows:
โ NumPy โ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
๐ Example: Creating an array and performing basic operations:
โ Matplotlib & Seaborn โ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
๐ Example: Creating a basic bar chart:
โ Scikit-Learn โ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
โ OpenPyXL โ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
๐ก Challenge for You!
Try writing a Python script that:
1๏ธโฃ Reads a CSV file
2๏ธโฃ Cleans missing data
3๏ธโฃ Creates a simple visualization
React with โฅ๏ธ if you want me to post the script for above challenge! โฌ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
๐ฅ Essential Python Libraries for Data Analysis:
โ Pandas โ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
๐ Example: Loading a CSV file and displaying the first 5 rows:
import pandas as pd df = pd.read_csv('data.csv') print(df.head())
โ NumPy โ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
๐ Example: Creating an array and performing basic operations:
import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average
โ Matplotlib & Seaborn โ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
๐ Example: Creating a basic bar chart:
import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show()
โ Scikit-Learn โ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
โ OpenPyXL โ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
๐ก Challenge for You!
Try writing a Python script that:
1๏ธโฃ Reads a CSV file
2๏ธโฃ Cleans missing data
3๏ธโฃ Creates a simple visualization
React with โฅ๏ธ if you want me to post the script for above challenge! โฌ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Forwarded from Artificial Intelligence
๐ฑ ๐๐ฅ๐๐ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐๐ฎ๐๐ฎ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ถ๐ฐ๐ธ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ & ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐ป๐ฒ๐๐
Want to break into Data Analytics or Data Scienceโbut donโt know where to begin?๐
Harvard University offers 5 completely free online courses that will build your foundation in Python, statistics, machine learning, and data visualization โ no prior experience or degree required!๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3T3ZhPu
These Harvard-certified courses will boost your resume, LinkedIn profile, and skillsโ ๏ธ
Want to break into Data Analytics or Data Scienceโbut donโt know where to begin?๐
Harvard University offers 5 completely free online courses that will build your foundation in Python, statistics, machine learning, and data visualization โ no prior experience or degree required!๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3T3ZhPu
These Harvard-certified courses will boost your resume, LinkedIn profile, and skillsโ ๏ธ
๐2
๐ฑ ๐๐ฅ๐๐ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ผ๐ฟ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐ ๐ฏ๐ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ, ๐๐๐ , ๐จ๐ฑ๐ฎ๐ฐ๐ถ๐๐ & ๐ ๐ผ๐ฟ๐ฒ๐
Looking to learn Python from scratchโwithout spending a rupee? ๐ป
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐ฅ๐จโ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HNeyBQ
Kickstart your careerโ ๏ธ
Looking to learn Python from scratchโwithout spending a rupee? ๐ป
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐ฅ๐จโ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HNeyBQ
Kickstart your careerโ ๏ธ
๐1
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐ช๐ถ๐น๐น ๐๐ฐ๐๐๐ฎ๐น๐น๐ ๐จ๐ฝ๐ด๐ฟ๐ฎ๐ฑ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
I failed my first data interview โ and hereโs why:โฌ๏ธ
โ No structured learning
โ No real projects
โ Just random YouTube tutorials and half-read blogs
If this sounds like you, donโt repeat my mistakeโจ๏ธ
Recruiters want proof of skills, not just buzzwords๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ka1ZOl
All The Best ๐
I failed my first data interview โ and hereโs why:โฌ๏ธ
โ No structured learning
โ No real projects
โ Just random YouTube tutorials and half-read blogs
If this sounds like you, donโt repeat my mistakeโจ๏ธ
Recruiters want proof of skills, not just buzzwords๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ka1ZOl
All The Best ๐
Forwarded from AI Prompts | ChatGPT | Google Gemini | Claude
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
๐2
Forwarded from Artificial Intelligence
๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฆ๐ค๐ ๐๐ฎ๐ป ๐๐ฒ ๐๐๐ป! ๐ฐ ๐๐ป๐๐ฒ๐ฟ๐ฎ๐ฐ๐๐ถ๐๐ฒ ๐ฃ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐ ๐ง๐ต๐ฎ๐ ๐๐ฒ๐ฒ๐น ๐๐ถ๐ธ๐ฒ ๐ฎ ๐๐ฎ๐บ๐ฒ๐
Think SQL is all about dry syntax and boring tutorials? Think again.๐ค
These 4 gamified SQL websites turn learning into an adventure โ from solving murder mysteries to exploring virtual islands, youโll write real SQL queries while cracking clues and completing missions๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and funโ ๏ธ
Think SQL is all about dry syntax and boring tutorials? Think again.๐ค
These 4 gamified SQL websites turn learning into an adventure โ from solving murder mysteries to exploring virtual islands, youโll write real SQL queries while cracking clues and completing missions๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and funโ ๏ธ
Hey guys,
Today, letโs talk about some of the Python questions you might face during a data analyst interview. Below, Iโve compiled the most commonly asked Python questions you should be prepared for in your interviews.
1. Why is Python used in data analysis?
Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.
2. What are the essential libraries used for data analysis in Python?
Some key libraries youโll use frequently are:
- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.
3. What is a Python dictionary, and how is it used in data analysis?
A dictionary in Python is an unordered collection of key-value pairs. Itโs extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.
Example:
4. Explain the difference between a list and a tuple in Python.
- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโs written in square brackets
Example:
- Tuple: Immutable, meaning once defined, you cannot modify it. Itโs written in parentheses
Example:
5. How would you handle missing data in a dataset using Python?
Handling missing data is critical in data analysis, and Pythonโs Pandas library makes it easy. Here are some common methods:
- Drop missing data:
- Fill missing data with a specific value:
- Forward-fill or backfill missing values:
6. How do you merge/join two datasets in Python?
- pd.merge(): For SQL-style joins (inner, outer, left, right).
- pd.concat(): For concatenating along rows or columns.
7. What is the purpose of lambda functions in Python?
A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.
Example:
Lambdas are often used in data analysis for quick transformations or filtering operations within functions like
If youโre preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.
Here you can find essential Python Interview Resources๐
https://t.me/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Today, letโs talk about some of the Python questions you might face during a data analyst interview. Below, Iโve compiled the most commonly asked Python questions you should be prepared for in your interviews.
1. Why is Python used in data analysis?
Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.
2. What are the essential libraries used for data analysis in Python?
Some key libraries youโll use frequently are:
- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.
3. What is a Python dictionary, and how is it used in data analysis?
A dictionary in Python is an unordered collection of key-value pairs. Itโs extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.
Example:
sales = {"January": 12000, "February": 15000, "March": 17000}
print(sales["February"]) # Output: 15000
4. Explain the difference between a list and a tuple in Python.
- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโs written in square brackets
[ ]
.Example:
my_list = [10, 20, 30]
my_list.append(40)
- Tuple: Immutable, meaning once defined, you cannot modify it. Itโs written in parentheses
( )
.Example:
my_tuple = (10, 20, 30)
5. How would you handle missing data in a dataset using Python?
Handling missing data is critical in data analysis, and Pythonโs Pandas library makes it easy. Here are some common methods:
- Drop missing data:
df.dropna()
- Fill missing data with a specific value:
df.fillna(0)
- Forward-fill or backfill missing values:
df.fillna(method='ffill') # Forward-fill
df.fillna(method='bfill') # Backfill
6. How do you merge/join two datasets in Python?
- pd.merge(): For SQL-style joins (inner, outer, left, right).
df_merged = pd.merge(df1, df2, on='common_column', how='inner')
- pd.concat(): For concatenating along rows or columns.
df_concat = pd.concat([df1, df2], axis=1)
7. What is the purpose of lambda functions in Python?
A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.
Example:
add = lambda x, y: x + y
print(add(10, 20)) # Output: 30
Lambdas are often used in data analysis for quick transformations or filtering operations within functions like
map()
or filter()
.If youโre preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.
Here you can find essential Python Interview Resources๐
https://t.me/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐4
Forwarded from Python Projects & Resources
๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐ธ๐ถ๐น๐น๐๐ฒ๐ ๐
โ Artificial Intelligence โ Master AI & Machine Learning
โ Blockchain โ Understand decentralization & smart contracts๐ฐ
โ Cloud Computing โ Learn AWS, Azure&cloud infrastructure โ
โ Web 3.0 โ Explore the future of the Internet &Apps ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified ๐
โ Artificial Intelligence โ Master AI & Machine Learning
โ Blockchain โ Understand decentralization & smart contracts๐ฐ
โ Cloud Computing โ Learn AWS, Azure&cloud infrastructure โ
โ Web 3.0 โ Explore the future of the Internet &Apps ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified ๐
Master Java programming in 15 days with Free Resources ๐๐
Days 1-3: Getting Started
1. Day 1: Install Java Development Kit (JDK) on your computer and set up your development environment.
2. Day 2: Learn the basics of Java syntax, variables, data types, and how to write a simple "Hello, World!" program.
3. Day 3: Dive into Java's Object-Oriented Programming (OOP) concepts, including classes and objects.
Days 4-6: Control Flow and Data Structures
4. Day 4: Study control flow structures like if statements, loops (for, while), and switch statements.
5. Day 5: Learn about data structures such as arrays and ArrayLists for handling collections of data.
6. Day 6: Explore more advanced data structures like HashMaps and Sets.
Days 7-9: Methods and Functions
7. Day 7: Understand methods and functions in Java, including method parameters and return values.
8. Day 8: Learn about method overloading and overriding, as well as access modifiers.
9. Day 9: Practice creating and using methods in your Java programs.
Days 10-12: Exception Handling and File I/O
10. Day 10: Study exception handling to deal with runtime errors.
11. Day 11: Explore file input/output to read and write data to files.
12. Day 12: Combine exception handling and file I/O in practical applications.
Days 13-15: Advanced Topics and Projects
13. Day 13: Learn about Java's built-in libraries, such as the Collections framework and the java.util package.
14. Day 14: Explore graphical user interfaces (GUI) using Java Swing or JavaFX.
15. Day 15: Work on a Java project to apply what you've learned. Build a simple application or program of your choice.
FREE RESOURCES TO LEARN JAVA ๐๐
Introduction to Programming in Java: https://ocw.mit.edu/courses/6-092-introduction-to-programming-in-java-january-iap-2010/
Java Tutorial for complete beginners: https://bit.ly/3MkvQWf
Introduction to Java Programming and Data Structures: https://t.me/programming_guide/573
Project Ideas for Java: https://t.me/Programming_experts/457
Free Website to Practice Java https://www.hackerrank.com/domains/java
Join @free4unow_backup for more free courses
ENJOY LEARNING๐๐
Days 1-3: Getting Started
1. Day 1: Install Java Development Kit (JDK) on your computer and set up your development environment.
2. Day 2: Learn the basics of Java syntax, variables, data types, and how to write a simple "Hello, World!" program.
3. Day 3: Dive into Java's Object-Oriented Programming (OOP) concepts, including classes and objects.
Days 4-6: Control Flow and Data Structures
4. Day 4: Study control flow structures like if statements, loops (for, while), and switch statements.
5. Day 5: Learn about data structures such as arrays and ArrayLists for handling collections of data.
6. Day 6: Explore more advanced data structures like HashMaps and Sets.
Days 7-9: Methods and Functions
7. Day 7: Understand methods and functions in Java, including method parameters and return values.
8. Day 8: Learn about method overloading and overriding, as well as access modifiers.
9. Day 9: Practice creating and using methods in your Java programs.
Days 10-12: Exception Handling and File I/O
10. Day 10: Study exception handling to deal with runtime errors.
11. Day 11: Explore file input/output to read and write data to files.
12. Day 12: Combine exception handling and file I/O in practical applications.
Days 13-15: Advanced Topics and Projects
13. Day 13: Learn about Java's built-in libraries, such as the Collections framework and the java.util package.
14. Day 14: Explore graphical user interfaces (GUI) using Java Swing or JavaFX.
15. Day 15: Work on a Java project to apply what you've learned. Build a simple application or program of your choice.
FREE RESOURCES TO LEARN JAVA ๐๐
Introduction to Programming in Java: https://ocw.mit.edu/courses/6-092-introduction-to-programming-in-java-january-iap-2010/
Java Tutorial for complete beginners: https://bit.ly/3MkvQWf
Introduction to Java Programming and Data Structures: https://t.me/programming_guide/573
Project Ideas for Java: https://t.me/Programming_experts/457
Free Website to Practice Java https://www.hackerrank.com/domains/java
Join @free4unow_backup for more free courses
ENJOY LEARNING๐๐
Forwarded from Python Projects & Resources
๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified ๐
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified ๐