๐ฐ ๐ฃ๐ผ๐๐ฒ๐ฟ๐ณ๐๐น ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ๐ฆ๐ฐ๐ฟ๐ถ๐ฝ๐, ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ, ๐๐/๐ ๐ & ๐๐ฟ๐ผ๐ป๐๐ฒ๐ป๐ฑ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐ ๐
Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners๐
Learning tech doesnโt have to be overwhelmingโespecially when you have a roadmap to guide you!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45wfx2V
Enjoy Learning โ ๏ธ
Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners๐
Learning tech doesnโt have to be overwhelmingโespecially when you have a roadmap to guide you!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45wfx2V
Enjoy Learning โ ๏ธ
๐1
Data Science Interview Questions
1. What are the different subsets of SQL?
Data Definition Language (DDL) โ It allows you to perform various operations on the database such as CREATE, ALTER, and DELETE objects.
Data Manipulation Language(DML) โ It allows you to access and manipulate data. It helps you to insert, update, delete and retrieve data from the database.
Data Control Language(DCL) โ It allows you to control access to the database. Example โ Grant, Revoke access permissions.
2. List the different types of relationships in SQL.
There are different types of relations in the database:
One-to-One โ This is a connection between two tables in which each record in one table corresponds to the maximum of one record in the other.
One-to-Many and Many-to-One โ This is the most frequent connection, in which a record in one table is linked to several records in another.
Many-to-Many โ This is used when defining a relationship that requires several instances on each sides.
Self-Referencing Relationships โ When a table has to declare a connection with itself, this is the method to employ.
3. How to create empty tables with the same structure as another table?
To create empty tables:
Using the INTO operator to fetch the records of one table into a new table while setting a WHERE clause to false for all entries, it is possible to create empty tables with the same structure. As a result, SQL creates a new table with a duplicate structure to accept the fetched entries, but nothing is stored into the new table since the WHERE clause is active.
4. What is Normalization and what are the advantages of it?
Normalization in SQL is the process of organizing data to avoid duplication and redundancy. Some of the advantages are:
Better Database organization
More Tables with smaller rows
Efficient data access
Greater Flexibility for Queries
Quickly find the information
Easier to implement Security
1. What are the different subsets of SQL?
Data Definition Language (DDL) โ It allows you to perform various operations on the database such as CREATE, ALTER, and DELETE objects.
Data Manipulation Language(DML) โ It allows you to access and manipulate data. It helps you to insert, update, delete and retrieve data from the database.
Data Control Language(DCL) โ It allows you to control access to the database. Example โ Grant, Revoke access permissions.
2. List the different types of relationships in SQL.
There are different types of relations in the database:
One-to-One โ This is a connection between two tables in which each record in one table corresponds to the maximum of one record in the other.
One-to-Many and Many-to-One โ This is the most frequent connection, in which a record in one table is linked to several records in another.
Many-to-Many โ This is used when defining a relationship that requires several instances on each sides.
Self-Referencing Relationships โ When a table has to declare a connection with itself, this is the method to employ.
3. How to create empty tables with the same structure as another table?
To create empty tables:
Using the INTO operator to fetch the records of one table into a new table while setting a WHERE clause to false for all entries, it is possible to create empty tables with the same structure. As a result, SQL creates a new table with a duplicate structure to accept the fetched entries, but nothing is stored into the new table since the WHERE clause is active.
4. What is Normalization and what are the advantages of it?
Normalization in SQL is the process of organizing data to avoid duplication and redundancy. Some of the advantages are:
Better Database organization
More Tables with smaller rows
Efficient data access
Greater Flexibility for Queries
Quickly find the information
Easier to implement Security
๐2
๐ด ๐๐ฒ๐๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ, ๐ ๐๐ง & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ๐
๐ Learn Data Science for Free from the Worldโs Best Universities๐
Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online โ and theyโre 100% free. ๐ฏ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hfpwjc
All The Best ๐
๐ Learn Data Science for Free from the Worldโs Best Universities๐
Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online โ and theyโre 100% free. ๐ฏ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hfpwjc
All The Best ๐
Forwarded from Python Projects & Resources
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ถ๐ป ๐๐๐๐ ๐ฏ ๐ ๐ผ๐ป๐๐ต๐ ๐๐ถ๐๐ต ๐ง๐ต๐ถ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ถ๐๐๐๐ฏ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ๐
๐ฏ Want to Master Data Science in Just 3 Months?๐
Feeling overwhelmed by the sheer volume of resources and donโt know where to start? Youโre not alone๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43uHPrX
This FREE GitHub roadmap is a game-changer for anyoneโ ๏ธ
๐ฏ Want to Master Data Science in Just 3 Months?๐
Feeling overwhelmed by the sheer volume of resources and donโt know where to start? Youโre not alone๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43uHPrX
This FREE GitHub roadmap is a game-changer for anyoneโ ๏ธ
Forwarded from Artificial Intelligence
๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐๐๐
๐๐ฝ๐ฝ๐น๐ ๐๐ถ๐ป๐ธ๐:-๐
S&P Global :- https://pdlink.in/3ZddwVz
IBM :- https://pdlink.in/4kDmMKE
TVS Credit :- https://pdlink.in/4mI0JVc
Sutherland :- https://pdlink.in/4mGYBgg
Other Jobs :- https://pdlink.in/44qEIDu
Apply before the link expires ๐ซ
๐๐ฝ๐ฝ๐น๐ ๐๐ถ๐ป๐ธ๐:-๐
S&P Global :- https://pdlink.in/3ZddwVz
IBM :- https://pdlink.in/4kDmMKE
TVS Credit :- https://pdlink.in/4mI0JVc
Sutherland :- https://pdlink.in/4mGYBgg
Other Jobs :- https://pdlink.in/44qEIDu
Apply before the link expires ๐ซ
Roadmap to Becoming a Python Developer ๐
1. Basics ๐ฑ
- Learn programming fundamentals and Python syntax.
2. Core Python ๐ง
- Master data structures, functions, and OOP.
3. Advanced Python ๐
- Explore modules, file handling, and exceptions.
4. Web Development ๐
- Use Django or Flask; build REST APIs.
5. Data Science ๐
- Learn NumPy, pandas, and Matplotlib.
6. Projects & Practice๐ก
- Build projects, contribute to open-source, join communities.
Like for more โค๏ธ
ENJOY LEARNING ๐๐
1. Basics ๐ฑ
- Learn programming fundamentals and Python syntax.
2. Core Python ๐ง
- Master data structures, functions, and OOP.
3. Advanced Python ๐
- Explore modules, file handling, and exceptions.
4. Web Development ๐
- Use Django or Flask; build REST APIs.
5. Data Science ๐
- Learn NumPy, pandas, and Matplotlib.
6. Projects & Practice๐ก
- Build projects, contribute to open-source, join communities.
Like for more โค๏ธ
ENJOY LEARNING ๐๐
๐1
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to Boost Your Resume with In-Demand Python Skills?๐จโ๐ป
In todayโs tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hnx3wh
Enjoy Learning โ ๏ธ
Want to Boost Your Resume with In-Demand Python Skills?๐จโ๐ป
In todayโs tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hnx3wh
Enjoy Learning โ ๏ธ
๐1
๐ Machine Learning Cheat Sheet ๐
1. Key Concepts:
- Supervised Learning: Learn from labeled data (e.g., classification, regression).
- Unsupervised Learning: Discover patterns in unlabeled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learn by interacting with an environment to maximize reward.
2. Common Algorithms:
- Linear Regression: Predict continuous values.
- Logistic Regression: Binary classification.
- Decision Trees: Simple, interpretable model for classification and regression.
- Random Forests: Ensemble method for improved accuracy.
- Support Vector Machines: Effective for high-dimensional spaces.
- K-Nearest Neighbors: Instance-based learning for classification/regression.
- K-Means: Clustering algorithm.
- Principal Component Analysis(PCA)
3. Performance Metrics:
- Classification: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Regression: Mean Absolute Error (MAE), Mean Squared Error (MSE), R^2 Score.
4. Data Preprocessing:
- Normalization: Scale features to a standard range.
- Standardization: Transform features to have zero mean and unit variance.
- Imputation: Handle missing data.
- Encoding: Convert categorical data into numerical format.
5. Model Evaluation:
- Cross-Validation: Ensure model generalization.
- Train-Test Split: Divide data to evaluate model performance.
6. Libraries:
- Python: Scikit-Learn, TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib.
- R: caret, randomForest, e1071, ggplot2.
7. Tips for Success:
- Feature Engineering: Enhance data quality and relevance.
- Hyperparameter Tuning: Optimize model parameters (Grid Search, Random Search).
- Model Interpretability: Use tools like SHAP and LIME.
- Continuous Learning: Stay updated with the latest research and trends.
๐ Dive into Machine Learning and transform data into insights! ๐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
1. Key Concepts:
- Supervised Learning: Learn from labeled data (e.g., classification, regression).
- Unsupervised Learning: Discover patterns in unlabeled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learn by interacting with an environment to maximize reward.
2. Common Algorithms:
- Linear Regression: Predict continuous values.
- Logistic Regression: Binary classification.
- Decision Trees: Simple, interpretable model for classification and regression.
- Random Forests: Ensemble method for improved accuracy.
- Support Vector Machines: Effective for high-dimensional spaces.
- K-Nearest Neighbors: Instance-based learning for classification/regression.
- K-Means: Clustering algorithm.
- Principal Component Analysis(PCA)
3. Performance Metrics:
- Classification: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Regression: Mean Absolute Error (MAE), Mean Squared Error (MSE), R^2 Score.
4. Data Preprocessing:
- Normalization: Scale features to a standard range.
- Standardization: Transform features to have zero mean and unit variance.
- Imputation: Handle missing data.
- Encoding: Convert categorical data into numerical format.
5. Model Evaluation:
- Cross-Validation: Ensure model generalization.
- Train-Test Split: Divide data to evaluate model performance.
6. Libraries:
- Python: Scikit-Learn, TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib.
- R: caret, randomForest, e1071, ggplot2.
7. Tips for Success:
- Feature Engineering: Enhance data quality and relevance.
- Hyperparameter Tuning: Optimize model parameters (Grid Search, Random Search).
- Model Interpretability: Use tools like SHAP and LIME.
- Continuous Learning: Stay updated with the latest research and trends.
๐ Dive into Machine Learning and transform data into insights! ๐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
๐2
Forwarded from Generative AI
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฒ ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐!๐
Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!๐จโ๐ป
No need for expensive coursesโstart learning for FREE today!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ddxd7P
Donโt miss this opportunityโstart learning today and take your skills to the next level!โ ๏ธ
Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!๐จโ๐ป
No need for expensive coursesโstart learning for FREE today!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Ddxd7P
Donโt miss this opportunityโstart learning today and take your skills to the next level!โ ๏ธ
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:
1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.
2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.
3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.
4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.
5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.
6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.
7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.
Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!
1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.
2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.
3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.
4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.
5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.
6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.
7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.
Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!
๐1
Forwarded from Python Projects & Resources
๐ง๐ต๐ฒ ๐๐ฒ๐๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ต๐ฒ๐ฎ๐ ๐ฆ๐ต๐ฒ๐ฒ๐ ๐ผ๐ป ๐๐ถ๐๐๐๐ฏ ๐๐๐ฒ๐ฟ๐ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ ๐ฆ๐ต๐ผ๐๐น๐ฑ ๐๐ผ๐ผ๐ธ๐บ๐ฎ๐ฟ๐ธ๐
๐ง Master Data Science Faster with This Free GitHub Cheat Sheet๐
Whether youโre starting your data science journey or preparing for job interviews, having the right revision tool can make all the difference๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4klQmF3
Must-have resource for students and professionalsโ ๏ธ
๐ง Master Data Science Faster with This Free GitHub Cheat Sheet๐
Whether youโre starting your data science journey or preparing for job interviews, having the right revision tool can make all the difference๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4klQmF3
Must-have resource for students and professionalsโ ๏ธ
10 Must-Know Python Libraries for LLMs in 2025
1. Hugging Face Transformers
Best for: Pre-trained LLMs, fine-tuning, inference
2. LangChain
Best for: LLM-powered apps, chatbots, AI agents
3. SpaCy
Best for: Tokenization, named entity recognition (NER), dependency parsing
4. Natural Language Toolkit (NLTK)
Best for: Linguistic analysis, tokenization, POS tagging
5. SentenceTransformers
Best for: Semantic search, similarity, clustering
6. FastText
Best for: Word embeddings, text classification
7. Gensim
Best for: Word2Vec, topic modeling, document embeddings
8. Stanza
Best for: Named entity recognition (NER), POS tagging
9. TextBlob
Best for: Sentiment analysis, POS tagging, text processing
10. Polyglot
Best for: Multi-language NLP, named entity recognition, word embeddings
1. Hugging Face Transformers
Best for: Pre-trained LLMs, fine-tuning, inference
2. LangChain
Best for: LLM-powered apps, chatbots, AI agents
3. SpaCy
Best for: Tokenization, named entity recognition (NER), dependency parsing
4. Natural Language Toolkit (NLTK)
Best for: Linguistic analysis, tokenization, POS tagging
5. SentenceTransformers
Best for: Semantic search, similarity, clustering
6. FastText
Best for: Word embeddings, text classification
7. Gensim
Best for: Word2Vec, topic modeling, document embeddings
8. Stanza
Best for: Named entity recognition (NER), POS tagging
9. TextBlob
Best for: Sentiment analysis, POS tagging, text processing
10. Polyglot
Best for: Multi-language NLP, named entity recognition, word embeddings
๐1
Forwarded from Artificial Intelligence
๐ฑ ๐ ๐๐๐-๐๐ผ๐น๐น๐ผ๐ ๐ฌ๐ผ๐๐ง๐๐ฏ๐ฒ ๐๐ต๐ฎ๐ป๐ป๐ฒ๐น๐ ๐ณ๐ผ๐ฟ ๐๐๐ฝ๐ถ๐ฟ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to Become a Data Scientist in 2025? Start Here!๐ฏ
If youโre serious about becoming a Data Scientist in 2025, the learning doesnโt have to be expensive โ or boring!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kfBR5q
Perfect for beginners and aspiring prosโ ๏ธ
Want to Become a Data Scientist in 2025? Start Here!๐ฏ
If youโre serious about becoming a Data Scientist in 2025, the learning doesnโt have to be expensive โ or boring!๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kfBR5q
Perfect for beginners and aspiring prosโ ๏ธ