๐๐ผ๐ผ๐ด๐น๐ฒ ๐ง๐ผ๐ฝ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
If youโre job hunting, switching careers, or just want to upgrade your skill set โ Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified ๐๏ธ
If youโre job hunting, switching careers, or just want to upgrade your skill set โ Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified ๐๏ธ
๐1
For data analysts working with Python, mastering these top 10 concepts is essential:
1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.
2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.
3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.
4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.
5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.
6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.
7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.
8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.
9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.
10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.
Give credits while sharing: https://t.me/pythonanalyst
ENJOY LEARNING ๐๐
1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.
2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.
3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.
4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.
5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.
6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.
7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.
8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.
9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.
10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.
Give credits while sharing: https://t.me/pythonanalyst
ENJOY LEARNING ๐๐
๐4
Forwarded from Python Projects & Resources
๐ณ ๐๐ฒ๐๐ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ (๐ก๐ผ ๐๐ผ๐๐, ๐ก๐ผ ๐๐ฎ๐๐ฐ๐ต!)๐
Want to become a Data Scientist in 2025 without spending a single rupee? Youโre in the right place๐
From Python and machine learning to hands-on projects and challenges๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dAuymr
Enjoy Learning โ ๏ธ
Want to become a Data Scientist in 2025 without spending a single rupee? Youโre in the right place๐
From Python and machine learning to hands-on projects and challenges๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dAuymr
Enjoy Learning โ ๏ธ
In a data science project, using multiple scalers can be beneficial when dealing with features that have different scales or distributions. Scaling is important in machine learning to ensure that all features contribute equally to the model training process and to prevent certain features from dominating others.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
๐5
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฎ๐ธ ๐๐ป๐๐ผ ๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐๐ถ๐๐ต ๐ง๐ต๐ถ๐ ๐๐ฅ๐๐ ๐ ๐๐ง ๐๐ผ๐๐ฟ๐๐ฒ๐
If youโre serious about AI, you canโt skip Deep Learningโand this FREE course from MIT is one of the best ways to start๐จโ๐ป๐
Offered by MITโs top researchers and engineers, this online course is open to everyone, no matter where you live or work๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H6cggR
Why wait to get started when you can learn from MIT for free?โ ๏ธ
If youโre serious about AI, you canโt skip Deep Learningโand this FREE course from MIT is one of the best ways to start๐จโ๐ป๐
Offered by MITโs top researchers and engineers, this online course is open to everyone, no matter where you live or work๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H6cggR
Why wait to get started when you can learn from MIT for free?โ ๏ธ
๐2
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified ๐
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified ๐
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐ ๐๐ผ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ฎ๐ถ๐น๐ (๐ก๐ผ ๐ฆ๐ถ๐ด๐ป๐๐ฝ ๐ก๐ฒ๐ฒ๐ฑ๐ฒ๐ฑ!)๐
๐ Want to Sharpen Your Data Analytics Skills for FREE?๐ซ
If youโre learning data analytics and want to build real skills, theory alone wonโt cut it. You need hands-on practiceโand the best part? You can do it daily, for free!๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44WK6ie
Enjoy Learning โ ๏ธ
๐ Want to Sharpen Your Data Analytics Skills for FREE?๐ซ
If youโre learning data analytics and want to build real skills, theory alone wonโt cut it. You need hands-on practiceโand the best part? You can do it daily, for free!๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44WK6ie
Enjoy Learning โ ๏ธ
5 GitHub Repo to Master Python
1. The Algorithms: https://github.com/TheAlgorithms/Python
2. Vinta: https://github.com/vinta/awesome-python
3. Avinash Kranjan: https://tinyurl.com/Amazing-Python-Scripts
4. Geek Computers: https://github.com/geekcomputers/Python
5. Practical Tutorials: https://tinyurl.com/project-based-learningg
Donโt forget to react โค๏ธ if youโd like to see more content like this!
Thank you all for joining! โค๏ธ๐
1. The Algorithms: https://github.com/TheAlgorithms/Python
2. Vinta: https://github.com/vinta/awesome-python
3. Avinash Kranjan: https://tinyurl.com/Amazing-Python-Scripts
4. Geek Computers: https://github.com/geekcomputers/Python
5. Practical Tutorials: https://tinyurl.com/project-based-learningg
Donโt forget to react โค๏ธ if youโd like to see more content like this!
Thank you all for joining! โค๏ธ๐
๐2
Forwarded from AI Prompts | ChatGPT | Google Gemini | Claude
๐ง๐ผ๐ฝ ๐ ๐ก๐๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
If you're serious about getting into Data Science with Python, follow this 5-step roadmap.
Each phase builds on the previous one, so donโt rush.
Take your time, build projects, and keep moving forward.
Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.
โ What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
โ Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).
Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.
โ What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
โ Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.
Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.
โ What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
โ Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.
Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
Youโll draw insights, detect trends, and prepare for modeling.
โ What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
โ Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.
Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.
โ What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()
โ Final Checkpoint:
Build your first ML project end-to-end
โ Load data
โ Clean it
โ Visualize it
โ Run EDA
โ Train & test a model
โ Share the project with visuals and explanations on GitHub
Donโt just complete tutorialsm create things.
Explain your work.
Build your GitHub.
Write a blog.
Thatโs how you go from โlearningโ to โlanding a job
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
Each phase builds on the previous one, so donโt rush.
Take your time, build projects, and keep moving forward.
Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.
โ What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
โ Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).
Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.
โ What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
โ Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.
Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.
โ What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
โ Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.
Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
Youโll draw insights, detect trends, and prepare for modeling.
โ What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
โ Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.
Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.
โ What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()
โ Final Checkpoint:
Build your first ML project end-to-end
โ Load data
โ Clean it
โ Visualize it
โ Run EDA
โ Train & test a model
โ Share the project with visuals and explanations on GitHub
Donโt just complete tutorialsm create things.
Explain your work.
Build your GitHub.
Write a blog.
Thatโs how you go from โlearningโ to โlanding a job
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
๐2
๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ