Python Projects & Free Books
38K subscribers
604 photos
93 files
305 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—™๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต & ๐——๐—ฎ๐˜๐—ฎ ๐—ฅ๐—ผ๐—น๐—ฒ๐˜€ โ€“ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ๐Ÿ˜

If youโ€™re aiming for a role in tech, data analytics, or software development, one of the most valuable skills you can master is Python๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jg88I8

All The Best ๐ŸŽŠ
๐Ÿ‘2
๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—š๐—ฒ๐˜ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฑ ๐—ถ๐—ป ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—ญ๐—ฒ๐—ฟ๐—ผ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ!๐Ÿง โšก

AI might sound complex. But guess what?
You donโ€™t need a PhD or 5 years of experience to break into this field.

Hereโ€™s your 6-step beginner roadmap to launch your AI journey the smart way๐Ÿ‘‡

๐Ÿ”น ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: Learn the Basics of Python (Your AI Superpower)
Python is the language of AI.
โœ… Learn variables, loops, functions, and data structures
โœ… Practice with platforms like W3Schools, SoloLearn, or Replit
โœ… Understand NumPy & Pandas basics (theyโ€™ll be your go-to tools)

๐Ÿ”น ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: Understand What AI Really Is
Before diving deep, get clarity.
โœ… What is AI vs ML vs Deep Learning?
โœ… Learn core concepts like Supervised vs Unsupervised Learning
โœ… Follow beginner-friendly YouTubers like โ€œStatQuestโ€ or โ€œCodebasicsโ€

๐Ÿ”น ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: Build Simple AI Projects (Even as a Beginner)
Start applying your skills with fun mini-projects:
โœ… Spam Email Classifier
โœ… House Price Predictor
โœ… Rock-Paper-Scissors Game using AI
Pro Tip: Use scikit-learn for most of these!

๐Ÿ”น ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: Get Comfortable with Data (AI Runs on It!)
AI = Algorithms + Data
โœ… Learn basic data cleaning with Pandas
โœ… Explore simple datasets from Kaggle or UCI ML Repository
โœ… Practice EDA (Exploratory Data Analysis) with Matplotlib & Seaborn

๐Ÿ”น ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: Take Free AI Courses (No Cost Learning)
You donโ€™t need a fancy bootcamp to start learning.
โœ… โ€œAI For Everyoneโ€ by Andrew Ng (Coursera)
โœ… โ€œMachine Learning with Pythonโ€ by IBM (edX)
โœ… Kaggleโ€™s Learn Track: Intro to ML

๐Ÿ”น ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฒ: Join AI Communities & Share Your Work
โœ… Join AI Discord servers, Reddit threads, and LinkedIn groups
โœ… Post your projects on GitHub
โœ… Engage in AI hackathons, challenges, and build in public
Your network = Your next opportunity.

๐ŸŽฏ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—™๐—ถ๐—ฟ๐˜€๐˜ ๐—”๐—œ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ = ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—˜๐—ป๐˜๐—ฟ๐˜† ๐—ฃ๐—ผ๐—ถ๐—ป๐˜
Itโ€™s not about knowing everythingโ€”itโ€™s about starting.
Consistency will compound.
Youโ€™ll go from โ€œbeginnerโ€ to โ€œbuilderโ€ faster than you think.

Free Artificial Intelligence Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E

#ai
๐Ÿ‘4
Forwarded from Artificial Intelligence
๐Ÿฏ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ-๐—™๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฑ๐—น๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐Ÿ‘ฉโ€๐Ÿ’ป Want to Break into Data Science but Donโ€™t Know Where to Start?๐Ÿš€

The best way to begin your data science journey is with hands-on projects using real-world datasets.๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44LoViW

Enjoy Learning โœ…๏ธ
Important Machine Learning Algorithms ๐Ÿ‘‡๐Ÿ‘‡

- Linear Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- k-Nearest Neighbors (kNN)
- Naive Bayes
- K-Means Clustering
- Hierarchical Clustering
- Principal Component Analysis (PCA)
- Neural Networks (Deep Learning)
- Gradient Boosting algorithms (e.g., XGBoost, LightGBM)

Like this post if you want me to explain each algorithm in detail

Share with credits: https://t.me/datasciencefun

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—ง๐—ผ๐—ฝ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

If youโ€™re job hunting, switching careers, or just want to upgrade your skill set โ€” Google Skillshop is your go-to platform in 2025!

Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4dwlDT2

Enroll For FREE & Get Certified ๐ŸŽ“๏ธ
๐Ÿ‘1
For data analysts working with Python, mastering these top 10 concepts is essential:

1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.

2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.

3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.

4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.

5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.

6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.

7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.

8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.

9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.

10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.

Give credits while sharing: https://t.me/pythonanalyst

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4
๐Ÿณ ๐—•๐—ฒ๐˜€๐˜ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—–๐—ผ๐˜€๐˜, ๐—ก๐—ผ ๐—–๐—ฎ๐˜๐—ฐ๐—ต!)๐Ÿ˜

Want to become a Data Scientist in 2025 without spending a single rupee? Youโ€™re in the right place๐Ÿ“Œ

From Python and machine learning to hands-on projects and challenges๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4dAuymr

Enjoy Learning โœ…๏ธ
In a data science project, using multiple scalers can be beneficial when dealing with features that have different scales or distributions. Scaling is important in machine learning to ensure that all features contribute equally to the model training process and to prevent certain features from dominating others.

Here are some scenarios where using multiple scalers can be helpful in a data science project:

1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.

2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.

3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.

4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.

5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.

When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
๐Ÿ‘5
๐—•๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—œ๐—ป๐˜๐—ผ ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ถ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—œ๐—ง ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

If youโ€™re serious about AI, you canโ€™t skip Deep Learningโ€”and this FREE course from MIT is one of the best ways to start๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Offered by MITโ€™s top researchers and engineers, this online course is open to everyone, no matter where you live or work๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3H6cggR

Why wait to get started when you can learn from MIT for free?โœ…๏ธ
๐Ÿ‘2
โŒจ๏ธ Python Tips & Tricks
๐Ÿ‘3
Forwarded from Artificial Intelligence
๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐Ÿ˜

Data Analytics :- https://pdlink.in/3Fq7E4p

Data Science :- https://pdlink.in/4iSWjaP

SQL :- https://pdlink.in/3EyjUPt

Python :- https://pdlink.in/4c7hGDL

Web Dev :- https://bit.ly/4ffFnJZ

AI :- https://pdlink.in/4d0SrTG

Enroll For FREE & Get Certified ๐ŸŽ“
Everything about APIs
๐Ÿ‘3
๐Ÿฐ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐——๐—ฎ๐—ถ๐—น๐˜† (๐—ก๐—ผ ๐—ฆ๐—ถ๐—ด๐—ป๐˜‚๐—ฝ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

๐Ÿš€ Want to Sharpen Your Data Analytics Skills for FREE?๐Ÿ’ซ

If youโ€™re learning data analytics and want to build real skills, theory alone wonโ€™t cut it. You need hands-on practiceโ€”and the best part? You can do it daily, for free!๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44WK6ie

Enjoy Learning โœ…๏ธ