Use Python to turn messy data into valuable insights!
Here are the main functions you need to know:
1. ๐ฑ๐ฟ๐ผ๐ฝ๐ป๐ฎ(): Clean up your dataset by removing missing values. Use df.dropna() to eliminate rows or columns with NaNs and keep your data clean.
2. ๐ณ๐ถ๐น๐น๐ป๐ฎ(): Replace missing values with a specified value or method. With the help of df.fillna(value) you maintain data integrity without losing valuable information.
3. ๐ฑ๐ฟ๐ผ๐ฝ_๐ฑ๐๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ฒ๐(): Ensure your data is unique and accurate. Use df.drop_duplicates() to remove duplicate rows and avoid skewing your analysis by aggregating redundant data.
4. ๐ฟ๐ฒ๐ฝ๐น๐ฎ๐ฐ๐ฒ(): Substitute specific values throughout your dataset. The function df.replace(to_replace, value) allows for efficient correction of errors and standardization of data.
5. ๐ฎ๐๐๐๐ฝ๐ฒ(): Convert data types for consistency and accuracy. Use the cast function df['column'].astype(dtype) to ensure your data columns are in the correct format you need for your analysis.
6. ๐ฎ๐ฝ๐ฝ๐น๐(): Apply custom functions to your data. df['column'].apply(func) lets you perform complex transformations and calculations. It works with both standard and lambda functions.
7. ๐๐๐ฟ.๐๐๐ฟ๐ถ๐ฝ(): Clean up text data by removing leading and trailing whitespace. Using df['column'].str.strip() helps you to avoid hard-to-spot errors in string comparisons.
8. ๐๐ฎ๐น๐๐ฒ_๐ฐ๐ผ๐๐ป๐๐(): Get a quick summary of the frequency of values in a column. df['column'].value_counts() helps you understand the distribution of your data.
9. ๐ฝ๐ฑ.๐๐ผ_๐ฑ๐ฎ๐๐ฒ๐๐ถ๐บ๐ฒ(): Convert strings to datetime objects for accurate date and time manipulation. For time series analysis the use of pd.to_datetime(df['column']) will often be one of your first steps in data preparation.
10. ๐ด๐ฟ๐ผ๐๐ฝ๐ฏ๐(): Aggregates data based on specific columns. Use df.groupby('column') to perform operations like sum, mean, or count on grouped data.
Learn to use these Python functions, to be able to transform a pile of messy data into the starting point of an impactful analysis.
Here are the main functions you need to know:
1. ๐ฑ๐ฟ๐ผ๐ฝ๐ป๐ฎ(): Clean up your dataset by removing missing values. Use df.dropna() to eliminate rows or columns with NaNs and keep your data clean.
2. ๐ณ๐ถ๐น๐น๐ป๐ฎ(): Replace missing values with a specified value or method. With the help of df.fillna(value) you maintain data integrity without losing valuable information.
3. ๐ฑ๐ฟ๐ผ๐ฝ_๐ฑ๐๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ฒ๐(): Ensure your data is unique and accurate. Use df.drop_duplicates() to remove duplicate rows and avoid skewing your analysis by aggregating redundant data.
4. ๐ฟ๐ฒ๐ฝ๐น๐ฎ๐ฐ๐ฒ(): Substitute specific values throughout your dataset. The function df.replace(to_replace, value) allows for efficient correction of errors and standardization of data.
5. ๐ฎ๐๐๐๐ฝ๐ฒ(): Convert data types for consistency and accuracy. Use the cast function df['column'].astype(dtype) to ensure your data columns are in the correct format you need for your analysis.
6. ๐ฎ๐ฝ๐ฝ๐น๐(): Apply custom functions to your data. df['column'].apply(func) lets you perform complex transformations and calculations. It works with both standard and lambda functions.
7. ๐๐๐ฟ.๐๐๐ฟ๐ถ๐ฝ(): Clean up text data by removing leading and trailing whitespace. Using df['column'].str.strip() helps you to avoid hard-to-spot errors in string comparisons.
8. ๐๐ฎ๐น๐๐ฒ_๐ฐ๐ผ๐๐ป๐๐(): Get a quick summary of the frequency of values in a column. df['column'].value_counts() helps you understand the distribution of your data.
9. ๐ฝ๐ฑ.๐๐ผ_๐ฑ๐ฎ๐๐ฒ๐๐ถ๐บ๐ฒ(): Convert strings to datetime objects for accurate date and time manipulation. For time series analysis the use of pd.to_datetime(df['column']) will often be one of your first steps in data preparation.
10. ๐ด๐ฟ๐ผ๐๐ฝ๐ฏ๐(): Aggregates data based on specific columns. Use df.groupby('column') to perform operations like sum, mean, or count on grouped data.
Learn to use these Python functions, to be able to transform a pile of messy data into the starting point of an impactful analysis.
๐10
Python project-based interview questions for a data analyst role, along with tips and sample answers [Part-1]
1. Data Cleaning and Preprocessing
- Question: Can you walk me through the data cleaning process you followed in a Python-based project?
- Answer: In my project, I used Pandas for data manipulation. First, I handled missing values by imputing them with the median for numerical columns and the most frequent value for categorical columns using
- Tip: Mention specific functions you used, like
2. Exploratory Data Analysis (EDA)
- Question: How did you perform EDA in a Python project? What tools did you use?
- Answer: I used Pandas for data exploration, generating summary statistics with
- Tip: Focus on how you used visualization tools like Matplotlib, Seaborn, or Plotly, and mention any specific insights you gained from EDA (e.g., data distributions, relationships, outliers).
3. Pandas Operations
- Question: Can you explain a situation where you had to manipulate a large dataset in Python using Pandas?
- Answer: In a project, I worked with a dataset containing over a million rows. I optimized my operations by using vectorized operations instead of Python loops. For example, I used
- Tip: Emphasize your understanding of efficient data manipulation with Pandas, mentioning functions like
4. Data Visualization
- Question: How do you create visualizations in Python to communicate insights from data?
- Answer: I primarily use Matplotlib and Seaborn for static plots and Plotly for interactive dashboards. For example, in one project, I used
- Tip: Mention the specific plots you created and how you customized them (e.g., adding labels, titles, adjusting axis scales). Highlight the importance of clear communication through visualization.
1. Data Cleaning and Preprocessing
- Question: Can you walk me through the data cleaning process you followed in a Python-based project?
- Answer: In my project, I used Pandas for data manipulation. First, I handled missing values by imputing them with the median for numerical columns and the most frequent value for categorical columns using
fillna()
. I also removed outliers by setting a threshold based on the interquartile range (IQR). Additionally, I standardized numerical columns using StandardScaler from Scikit-learn and performed one-hot encoding for categorical variables using Pandas' get_dummies()
function.- Tip: Mention specific functions you used, like
dropna()
, fillna()
, apply()
, or replace()
, and explain your rationale for selecting each method.2. Exploratory Data Analysis (EDA)
- Question: How did you perform EDA in a Python project? What tools did you use?
- Answer: I used Pandas for data exploration, generating summary statistics with
describe()
and checking for correlations with corr()
. For visualization, I used Matplotlib and Seaborn to create histograms, scatter plots, and box plots. For instance, I used sns.pairplot()
to visually assess relationships between numerical features, which helped me detect potential multicollinearity. Additionally, I applied pivot tables to analyze key metrics by different categorical variables.- Tip: Focus on how you used visualization tools like Matplotlib, Seaborn, or Plotly, and mention any specific insights you gained from EDA (e.g., data distributions, relationships, outliers).
3. Pandas Operations
- Question: Can you explain a situation where you had to manipulate a large dataset in Python using Pandas?
- Answer: In a project, I worked with a dataset containing over a million rows. I optimized my operations by using vectorized operations instead of Python loops. For example, I used
apply()
with a lambda function to transform a column, and groupby()
to aggregate data by multiple dimensions efficiently. I also leveraged merge()
to join datasets on common keys.- Tip: Emphasize your understanding of efficient data manipulation with Pandas, mentioning functions like
groupby()
, merge()
, concat()
, or pivot()
.4. Data Visualization
- Question: How do you create visualizations in Python to communicate insights from data?
- Answer: I primarily use Matplotlib and Seaborn for static plots and Plotly for interactive dashboards. For example, in one project, I used
sns.heatmap()
to visualize the correlation matrix and sns.barplot()
for comparing categorical data. For time-series data, I used Matplotlib to create line plots that displayed trends over time. When presenting the results, I tailored visualizations to the audience, ensuring clarity and simplicity.- Tip: Mention the specific plots you created and how you customized them (e.g., adding labels, titles, adjusting axis scales). Highlight the importance of clear communication through visualization.
๐5
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.me/sqlproject
ENJOY LEARNING ๐๐
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.me/sqlproject
ENJOY LEARNING ๐๐
๐5
โ
Learn Trending Skills in 2025 ๐ฐ
1. Web Development โ
โ๏ธ https://t.me/webdevcoursefree
2. CSS โ
โ๏ธ http://css-tricks.com
3. JavaScript โ
โ๏ธ http://t.me/javascript_courses
4. React โ
โ๏ธ http://react-tutorial.app
5. Tailwind CSS โ
โ๏ธ http://scrimba.com
6. Data Science โ
โ๏ธ https://t.me/datasciencefun
7. Python โ
โ๏ธ http://pythontutorial.net
8. SQL โ
โ๏ธ https://t.me/sqlanalyst
โ๏ธ https://stratascratch.com/?via=free
9. Git and GitHub โ
โ๏ธ http://GitFluence.com
10. Blockchain โ
โ๏ธ https://t.me/Bitcoin_Crypto_Web
11. Mongo DB โ
โ๏ธ http://mongodb.com
12. Node JS โ
โ๏ธ http://nodejsera.com
13. English Speaking โ
โ๏ธ https://t.me/englishlearnerspro
14. C#โ
โ๏ธhttps://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excelโ
โ๏ธ https://t.me/excel_analyst
16. Generative AIโ
โ๏ธ https://t.me/generativeai_gpt
17. App Development โ
โ๏ธ https://t.me/appsuser
18. Power BI โ
โ๏ธ https://t.me/powerbi_analyst
19. Tableau โ
โ๏ธ https://www.tableau.com/learn/training
20. Machine Learning โ
โ๏ธ http://developers.google.com/machine-learning/crash-course
21. Artificial intelligence โ
โ๏ธ http://t.me/machinelearning_deeplearning/
22. Data Analytics โ
โ๏ธ https://medium.com/@data_analyst
โ๏ธ https://www.linkedin.com/company/sql-analysts
23. Java โ
โ๏ธ https://t.me/Java_Programming_Notes
โ๏ธ http://learn.microsoft.com/shows/java-for-beginners/
24. C/C++ โ
โ๏ธ http://imp.i115008.net/kjoq9V
โ๏ธ https://docs.microsoft.com/en-us/cpp/c-language/?view=msvc-170&viewFallbackFrom=vs-2019
25. Data Structures โ
โ๏ธ https://leetcode.com/study-plan/data-structure/
26. Cybersecurity โ
โ๏ธ https://t.me/EthicalHackingToday
27. Linux โ
โ๏ธ https://bit.ly/3KhPdf1
โ๏ธ https://training.linuxfoundation.org/resources/
28. Typescript โ
โ๏ธ http://learn.microsoft.com/training/paths/build-javascript-applications-typescript/
29. Deep Learning โ
โ๏ธ http://introtodeeplearning.com
30. Compiler Design โ
โ๏ธ http://online.stanford.edu/courses/soe-ycscs1-compilers
31. DSA โ
โ๏ธ http://techdevguide.withgoogle.com/paths/data-structures-and-algorithms/
32. Prompt Engineering โ
โ๏ธ https://www.promptingguide.ai/
โ๏ธ https://t.me/aiindi
Join @free4unow_backup for more free courses
Like for more โค๏ธ
ENJOY LEARNING๐๐
1. Web Development โ
โ๏ธ https://t.me/webdevcoursefree
2. CSS โ
โ๏ธ http://css-tricks.com
3. JavaScript โ
โ๏ธ http://t.me/javascript_courses
4. React โ
โ๏ธ http://react-tutorial.app
5. Tailwind CSS โ
โ๏ธ http://scrimba.com
6. Data Science โ
โ๏ธ https://t.me/datasciencefun
7. Python โ
โ๏ธ http://pythontutorial.net
8. SQL โ
โ๏ธ https://t.me/sqlanalyst
โ๏ธ https://stratascratch.com/?via=free
9. Git and GitHub โ
โ๏ธ http://GitFluence.com
10. Blockchain โ
โ๏ธ https://t.me/Bitcoin_Crypto_Web
11. Mongo DB โ
โ๏ธ http://mongodb.com
12. Node JS โ
โ๏ธ http://nodejsera.com
13. English Speaking โ
โ๏ธ https://t.me/englishlearnerspro
14. C#โ
โ๏ธhttps://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excelโ
โ๏ธ https://t.me/excel_analyst
16. Generative AIโ
โ๏ธ https://t.me/generativeai_gpt
17. App Development โ
โ๏ธ https://t.me/appsuser
18. Power BI โ
โ๏ธ https://t.me/powerbi_analyst
19. Tableau โ
โ๏ธ https://www.tableau.com/learn/training
20. Machine Learning โ
โ๏ธ http://developers.google.com/machine-learning/crash-course
21. Artificial intelligence โ
โ๏ธ http://t.me/machinelearning_deeplearning/
22. Data Analytics โ
โ๏ธ https://medium.com/@data_analyst
โ๏ธ https://www.linkedin.com/company/sql-analysts
23. Java โ
โ๏ธ https://t.me/Java_Programming_Notes
โ๏ธ http://learn.microsoft.com/shows/java-for-beginners/
24. C/C++ โ
โ๏ธ http://imp.i115008.net/kjoq9V
โ๏ธ https://docs.microsoft.com/en-us/cpp/c-language/?view=msvc-170&viewFallbackFrom=vs-2019
25. Data Structures โ
โ๏ธ https://leetcode.com/study-plan/data-structure/
26. Cybersecurity โ
โ๏ธ https://t.me/EthicalHackingToday
27. Linux โ
โ๏ธ https://bit.ly/3KhPdf1
โ๏ธ https://training.linuxfoundation.org/resources/
28. Typescript โ
โ๏ธ http://learn.microsoft.com/training/paths/build-javascript-applications-typescript/
29. Deep Learning โ
โ๏ธ http://introtodeeplearning.com
30. Compiler Design โ
โ๏ธ http://online.stanford.edu/courses/soe-ycscs1-compilers
31. DSA โ
โ๏ธ http://techdevguide.withgoogle.com/paths/data-structures-and-algorithms/
32. Prompt Engineering โ
โ๏ธ https://www.promptingguide.ai/
โ๏ธ https://t.me/aiindi
Join @free4unow_backup for more free courses
Like for more โค๏ธ
ENJOY LEARNING๐๐
๐8