Many people pay too much to learn Python, but my mission is to break down barriers. I have shared complete learning series to learn Python from scratch.
Here are the links to the Python series
Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548
Part-1: https://t.me/sqlspecialist/562
Part-2: https://t.me/sqlspecialist/564
Part-3: https://t.me/sqlspecialist/565
Part-4: https://t.me/sqlspecialist/566
Part-5: https://t.me/sqlspecialist/568
Part-6: https://t.me/sqlspecialist/570
Part-7: https://t.me/sqlspecialist/571
Part-8: https://t.me/sqlspecialist/572
Part-9: https://t.me/sqlspecialist/578
Part-10: https://t.me/sqlspecialist/577
Part-11: https://t.me/sqlspecialist/578
Part-12:
https://t.me/sqlspecialist/581
Part-13: https://t.me/sqlspecialist/583
Part-14: https://t.me/sqlspecialist/584
Part-15: https://t.me/sqlspecialist/585
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523
Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588
I'll continue with learning series on Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
Here are the links to the Python series
Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548
Part-1: https://t.me/sqlspecialist/562
Part-2: https://t.me/sqlspecialist/564
Part-3: https://t.me/sqlspecialist/565
Part-4: https://t.me/sqlspecialist/566
Part-5: https://t.me/sqlspecialist/568
Part-6: https://t.me/sqlspecialist/570
Part-7: https://t.me/sqlspecialist/571
Part-8: https://t.me/sqlspecialist/572
Part-9: https://t.me/sqlspecialist/578
Part-10: https://t.me/sqlspecialist/577
Part-11: https://t.me/sqlspecialist/578
Part-12:
https://t.me/sqlspecialist/581
Part-13: https://t.me/sqlspecialist/583
Part-14: https://t.me/sqlspecialist/584
Part-15: https://t.me/sqlspecialist/585
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523
Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588
I'll continue with learning series on Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
๐11
Here is an A-Z list of essential programming terms:
1. Array: A data structure that stores a collection of elements of the same type in contiguous memory locations.
2. Boolean: A data type that represents true or false values.
3. Conditional Statement: A statement that executes different code based on a condition.
4. Debugging: The process of identifying and fixing errors or bugs in a program.
5. Exception: An event that occurs during the execution of a program that disrupts the normal flow of instructions.
6. Function: A block of code that performs a specific task and can be called multiple times in a program.
7. GUI (Graphical User Interface): A visual way for users to interact with a computer program using graphical elements like windows, buttons, and menus.
8. HTML (Hypertext Markup Language): The standard markup language used to create web pages.
9. Integer: A data type that represents whole numbers without any fractional part.
10. JSON (JavaScript Object Notation): A lightweight data interchange format commonly used for transmitting data between a server and a web application.
11. Loop: A programming construct that allows repeating a block of code multiple times.
12. Method: A function that is associated with an object in object-oriented programming.
13. Null: A special value that represents the absence of a value.
14. Object-Oriented Programming (OOP): A programming paradigm based on the concept of "objects" that encapsulate data and behavior.
15. Pointer: A variable that stores the memory address of another variable.
16. Queue: A data structure that follows the First-In-First-Out (FIFO) principle.
17. Recursion: A programming technique where a function calls itself to solve a problem.
18. String: A data type that represents a sequence of characters.
19. Tuple: An ordered collection of elements, similar to an array but immutable.
20. Variable: A named storage location in memory that holds a value.
21. While Loop: A loop that repeatedly executes a block of code as long as a specified condition is true.
Best Programming Resources: https://topmate.io/coding/898340
Join for more: https://t.me/programming_guide
ENJOY LEARNING ๐๐
1. Array: A data structure that stores a collection of elements of the same type in contiguous memory locations.
2. Boolean: A data type that represents true or false values.
3. Conditional Statement: A statement that executes different code based on a condition.
4. Debugging: The process of identifying and fixing errors or bugs in a program.
5. Exception: An event that occurs during the execution of a program that disrupts the normal flow of instructions.
6. Function: A block of code that performs a specific task and can be called multiple times in a program.
7. GUI (Graphical User Interface): A visual way for users to interact with a computer program using graphical elements like windows, buttons, and menus.
8. HTML (Hypertext Markup Language): The standard markup language used to create web pages.
9. Integer: A data type that represents whole numbers without any fractional part.
10. JSON (JavaScript Object Notation): A lightweight data interchange format commonly used for transmitting data between a server and a web application.
11. Loop: A programming construct that allows repeating a block of code multiple times.
12. Method: A function that is associated with an object in object-oriented programming.
13. Null: A special value that represents the absence of a value.
14. Object-Oriented Programming (OOP): A programming paradigm based on the concept of "objects" that encapsulate data and behavior.
15. Pointer: A variable that stores the memory address of another variable.
16. Queue: A data structure that follows the First-In-First-Out (FIFO) principle.
17. Recursion: A programming technique where a function calls itself to solve a problem.
18. String: A data type that represents a sequence of characters.
19. Tuple: An ordered collection of elements, similar to an array but immutable.
20. Variable: A named storage location in memory that holds a value.
21. While Loop: A loop that repeatedly executes a block of code as long as a specified condition is true.
Best Programming Resources: https://topmate.io/coding/898340
Join for more: https://t.me/programming_guide
ENJOY LEARNING ๐๐
๐6
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ (๐ก๐ผ ๐ฆ๐๐ฟ๐ถ๐ป๐ด๐ ๐๐๐๐ฎ๐ฐ๐ต๐ฒ๐ฑ)
๐ก๐ผ ๐ณ๐ฎ๐ป๐ฐ๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐, ๐ป๐ผ ๐ฐ๐ผ๐ป๐ฑ๐ถ๐๐ถ๐ผ๐ป๐, ๐ท๐๐๐ ๐ฝ๐๐ฟ๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด.
๐๐ฒ๐ฟ๐ฒโ๐ ๐ต๐ผ๐ ๐๐ผ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐:
1๏ธโฃ Python Programming for Data Science โ Harvardโs CS50P
The best intro to Python for absolute beginners:
โฌ Covers loops, data structures, and practical exercises.
โฌ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://t.me/datasciencefun
2๏ธโฃ Statistics & Probability โ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โฌ Clear, beginner-friendly videos.
โฌ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3๏ธโฃ Linear Algebra for Data Science โ 3Blue1Brown
โฌ Learn about matrices, vectors, and transformations.
โฌ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4๏ธโฃ SQL Basics โ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โฌ Writing queries, joins, and filtering data.
โฌ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5๏ธโฃ Data Visualization โ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โฌ Covers Matplotlib, Seaborn, and Plotly.
โฌ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6๏ธโฃ Machine Learning Basics โ Googleโs Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โฌ Learn supervised and unsupervised learning.
โฌ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7๏ธโฃ Deep Learning โ Fast.aiโs Free Course
Fast.ai makes deep learning easy and accessible:
โฌ Build neural networks with PyTorch.
โฌ Learn by coding real projects.
Link: https://course.fast.ai/
8๏ธโฃ Data Science Projects โ Kaggle
โฌ Compete in challenges to practice your skills.
โฌ Great way to build your portfolio.
Link: https://www.kaggle.com/
๐ก๐ผ ๐ณ๐ฎ๐ป๐ฐ๐ ๐ฐ๐ผ๐๐ฟ๐๐ฒ๐, ๐ป๐ผ ๐ฐ๐ผ๐ป๐ฑ๐ถ๐๐ถ๐ผ๐ป๐, ๐ท๐๐๐ ๐ฝ๐๐ฟ๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด.
๐๐ฒ๐ฟ๐ฒโ๐ ๐ต๐ผ๐ ๐๐ผ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐:
1๏ธโฃ Python Programming for Data Science โ Harvardโs CS50P
The best intro to Python for absolute beginners:
โฌ Covers loops, data structures, and practical exercises.
โฌ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://t.me/datasciencefun
2๏ธโฃ Statistics & Probability โ Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
โฌ Clear, beginner-friendly videos.
โฌ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3๏ธโฃ Linear Algebra for Data Science โ 3Blue1Brown
โฌ Learn about matrices, vectors, and transformations.
โฌ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4๏ธโฃ SQL Basics โ Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
โฌ Writing queries, joins, and filtering data.
โฌ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5๏ธโฃ Data Visualization โ freeCodeCamp
Learn to create stunning visualizations using Python libraries:
โฌ Covers Matplotlib, Seaborn, and Plotly.
โฌ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6๏ธโฃ Machine Learning Basics โ Googleโs Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
โฌ Learn supervised and unsupervised learning.
โฌ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7๏ธโฃ Deep Learning โ Fast.aiโs Free Course
Fast.ai makes deep learning easy and accessible:
โฌ Build neural networks with PyTorch.
โฌ Learn by coding real projects.
Link: https://course.fast.ai/
8๏ธโฃ Data Science Projects โ Kaggle
โฌ Compete in challenges to practice your skills.
โฌ Great way to build your portfolio.
Link: https://www.kaggle.com/
๐9
Here are 10 project ideas to work on for Data Analytics
1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.
And this is how you can work on
Hereโs a compact list of free resources for working on data analytics projects:
1. Datasets
โข Kaggle Datasets: Wide range of datasets and community discussions.
โข UCI Machine Learning Repository: Great for educational datasets.
โข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โข 365DataScience: Data Science & AI Related Courses
3. Tools
โข Google Colab: Free Jupyter Notebooks for Python coding.
โข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โข Data Analytics on Medium: Project guides and tutorials.
ENJOY LEARNING โ ๏ธโ ๏ธ
#datascienceprojects
1. Customer Churn Prediction: Predict customer churn for subscription-based services. Skills: EDA, classification models. Tools: Python, Scikit-Learn.
2. Retail Sales Forecasting: Forecast sales using historical data. Skills: Time series analysis. Tools: Python, Statsmodels.
3. Sentiment Analysis: Analyze sentiments in product reviews or tweets. Skills: Text processing, NLP. Tools: Python, NLTK.
4. Loan Approval Prediction: Predict loan approvals based on credit risk. Skills: Classification models. Tools: Python, Scikit-Learn.
5. COVID-19 Data Analysis: Explore and visualize COVID-19 trends. Skills: EDA, visualization. Tools: Python, Tableau.
6. Traffic Accident Analysis: Discover patterns in traffic accidents. Skills: Clustering, heatmaps. Tools: Python, Folium.
7. Movie Recommendation System: Build a recommendation system using user ratings. Skills: Collaborative filtering. Tools: Python, Scikit-Learn.
8. E-commerce Analysis: Analyze top-performing products in e-commerce. Skills: EDA, association rules. Tools: Python, Apriori.
9. Stock Market Analysis: Analyze stock trends using historical data. Skills: Moving averages, sentiment analysis. Tools: Python, Matplotlib.
10. Employee Attrition Analysis: Predict employee turnover. Skills: Classification models, HR analytics. Tools: Python, Scikit-Learn.
And this is how you can work on
Hereโs a compact list of free resources for working on data analytics projects:
1. Datasets
โข Kaggle Datasets: Wide range of datasets and community discussions.
โข UCI Machine Learning Repository: Great for educational datasets.
โข Data.gov: U.S. government datasets (e.g., traffic, COVID-19).
2. Learning Platforms
โข YouTube: Channels like Data School and freeCodeCamp for tutorials.
โข 365DataScience: Data Science & AI Related Courses
3. Tools
โข Google Colab: Free Jupyter Notebooks for Python coding.
โข Tableau Public & Power BI Desktop: Free data visualization tools.
4. Project Resources
โข Kaggle Notebooks & GitHub: Code examples and project walk-throughs.
โข Data Analytics on Medium: Project guides and tutorials.
ENJOY LEARNING โ ๏ธโ ๏ธ
#datascienceprojects
๐6
๐ง๐ผ๐ฝ ๐ญ๐ฑ ๐๐ฎ๐บ๐ฒ ๐๐ฒ๐ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ๐๐พ๐ฎ
1. C++: AAA games (Unreal)
2. C#: Unity, indie game
3. JavaScript: Web game
4. Java: Android game
5. Python: Prototypes (Pygame)
6. Lua: Scripting (Roblox)
7. Swift: iOS games
8. Objective-C: Legacy iOS/macOS
9. Rust: System-level (Amethyst)
10. Go: Multiplayer servers
11. HTML5 + JS: Simple 2D games
12. Kotlin: Android apps
13. Haxe: Cross-platform 2D
14. TypeScript: Scalable web games
15. Ruby: Lightweight 2D games
1. C++: AAA games (Unreal)
2. C#: Unity, indie game
3. JavaScript: Web game
4. Java: Android game
5. Python: Prototypes (Pygame)
6. Lua: Scripting (Roblox)
7. Swift: iOS games
8. Objective-C: Legacy iOS/macOS
9. Rust: System-level (Amethyst)
10. Go: Multiplayer servers
11. HTML5 + JS: Simple 2D games
12. Kotlin: Android apps
13. Haxe: Cross-platform 2D
14. TypeScript: Scalable web games
15. Ruby: Lightweight 2D games
๐2