Python Projects & Free Books
38K subscribers
604 photos
93 files
305 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
Must Study: These are the important Questions for Data Analyst โœ…



SQL
1. How do you handle NULL values in SQL queries, and why is it important?
2. What is the difference between INNER JOIN and OUTER JOIN, and when would you use each?
3. How do you implement transaction control in SQL Server?

Excel
1. How do you use pivot tables to analyze large datasets in Excel?
2. What are Excel's built-in functions for statistical analysis, and how do you use them?
3. How do you create interactive dashboards in Excel?

Power BI
1. How do you optimize Power BI reports for performance?
2. What is the role of DAX (Data Analysis Expressions) in Power BI, and how do you use it?
3. How do you handle real-time data streaming in Power BI?

Python
1. How do you use Pandas for data manipulation, and what are some advanced features?
2. How do you implement machine learning models in Python, from data preparation to deployment?
3. What are the best practices for handling large datasets in Python?

Data Visualization
1. How do you choose the right visualization technique for different types of data?
2. What is the importance of color theory in data visualization?
3. How do you use tools like Tableau or Power BI for advanced data storytelling?

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘3
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐—ง๐—ผ๐—ฝ ๐—ข๐—ฟ๐—ด๐—ฎ๐—ป๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

A power-packed selection of 100% free, certified courses from top institutions:

- Data Analytics โ€“ Cisco
- Digital Marketing โ€“ Google
- Python for AI โ€“ IBM/edX
- SQL & Databases โ€“ Stanford
- Generative AI โ€“ Google Cloud
- Machine Learning โ€“ Harvard

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 
 
https://pdlink.in/3FcwrZK
 
Master inโ€‘demand tech skills with these 6 certified, top-tier free courses
File Handling in Python ๐Ÿ‘†
๐Ÿ‘1
๐Ÿš€ ๐Ÿณ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ + ๐—Ÿ๐—ถ๐—ป๐—ธ๐—ฒ๐—ฑ๐—œ๐—ป ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐Ÿ˜

Gain globally recognized skills with Microsoft x LinkedIn Career Essentials โ€“ completely FREE!

๐ŸŽฏ Top Certifications:
๐Ÿ”น Generative AI
๐Ÿ”น Data Analysis
๐Ÿ”น Software Development
๐Ÿ”น Project Management
๐Ÿ”น Business Analysis
๐Ÿ”น System Administration
๐Ÿ”น Administrative Assistance

๐Ÿ“š 100% Free | Self-Paced | Industry-Aligned

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 
 
https://pdlink.in/46TZP2h
 
๐Ÿ’ผ Perfect for students, freshers & working professionals
๐Ÿ‘2
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘4
Forwarded from Artificial Intelligence
๐—ง๐—ถ๐—ฟ๐—ฒ๐—ฑ ๐—ผ๐—ณ ๐˜€๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐—ณ๐—ถ๐—ป๐—ฑ ๐—ด๐—ผ๐—ผ๐—ฑ ๐—”๐—œ/๐— ๐—Ÿ ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—ฝ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ?๐Ÿ˜

Stop wasting hours searching โ€” hereโ€™s a GOLDMINE ๐Ÿ’Ž

โœ… 500+ Real-World Projects with Code
โœ… Covers NLP, Computer Vision, Deep Learning, ML Pipelines
โœ… Beginner to Advanced Levels
โœ… Resume-Worthy, Interview-Ready!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45gTMU8

โœจSave this. Share this. Start building.โœ…๏ธ
Applications of Deep Learning
๐Ÿ‘3
๐Ÿฑ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ โ€“ ๐—ช๐—ถ๐˜๐—ต ๐—™๐˜‚๐—น๐—น ๐—ง๐˜‚๐˜๐—ผ๐—ฟ๐—ถ๐—ฎ๐—น๐˜€!๐Ÿ˜

Are you ready to build real-world tech projects that donโ€™t just look good on your resume, but actually teach you practical, job-ready skills?๐Ÿง‘โ€๐Ÿ’ป๐Ÿ“Œ

Hereโ€™s a curated list of 5 high-value development tutorials โ€” covering everything from full-stack development and real-time chat apps to AI form builders and reinforcement learningโœจ๏ธ๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3UtCSLO

Theyโ€™re real, portfolio-worthy projects you can start todayโœ…๏ธ
๐Ÿ‘1
Writing Python Lists
๐Ÿ‘3
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—ฃ๐—น๐—ฎ๐˜†๐—น๐—ถ๐˜€๐˜๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—ช๐—ถ๐—น๐—น ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐—ค๐˜‚๐—ฒ๐—ฟ๐˜† ๐—ฃ๐—ฟ๐—ผ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Still stuck Googling โ€œWhat is SQL?โ€ every time you start a new project?๐Ÿ’ต

Youโ€™re not alone. Many beginners bounce between tutorials without ever feeling confident writing SQL queries on their own.๐Ÿ‘จโ€๐Ÿ’ปโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4f1F6LU

Letโ€™s dive into the ones that are actually worth your timeโœ…๏ธ
๐Ÿ‘2
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! ๐Ÿ“Œ

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, itโ€™s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘1
๐ŸŽ“๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ! ๐Ÿš€

Upgrade your skills and earn industry-recognized certificates โ€” 100% FREE!

โœ… Big Data Analytics โ€“ https://pdlink.in/4nzRoza

โœ… AI & ML โ€“ https://pdlink.in/401SWry

โœ… Cloud Computing โ€“ https://pdlink.in/3U2sMkR

โœ… Cyber Security โ€“ https://pdlink.in/4nzQaDQ

โœ… Other Tech Courses โ€“ https://pdlink.in/4lIN673

๐ŸŽฏ Enroll Now & Get Certified for FREE