Python Projects & Free Books
38K subscribers
604 photos
93 files
305 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—™๐—”๐—”๐—ก๐—š ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜!๐Ÿ˜

If youโ€™re serious about cracking top tech interviews โ€” from FAANG to startups โ€” this is the roadmap you canโ€™t afford to miss๐ŸŽŠ

Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ€” completely free๐Ÿคฉ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3TJlpyW

Your dream job might just start here.โœ…๏ธ
๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—Ÿ๐—ถ๐˜€๐˜ ๐— ๐—ฒ๐˜๐—ต๐—ผ๐—ฑ๐˜€ ๐—–๐—ต๐—ฒ๐—ฎ๐˜ ๐—ฆ๐—ต๐—ฒ๐—ฒ๐˜

๐Ÿญ. ๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐—ฑ( ) โ€“ Adds an element to the end of the list.
๐Ÿฎ. ๐—ฐ๐—ผ๐˜‚๐—ป๐˜( ) โ€“ Returns the number of occurrences of a specific element.
๐Ÿฏ. ๐—ฐ๐—ผ๐—ฝ๐˜†( ) โ€“ Creates a duplicate of the list.
๐Ÿฐ. ๐—ถ๐—ป๐—ฑ๐—ฒ๐˜…( ) โ€“ Returns the position of the first occurrence of an element.
๐Ÿฑ. ๐—ถ๐—ป๐˜€๐—ฒ๐—ฟ๐˜(๐Ÿญ, ) โ€“ Inserts an element at a specified index.
๐Ÿฒ. ๐—ฟ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ฒ( ) โ€“ Reverses the order of elements in the list.
๐Ÿณ. ๐—ฝ๐—ผ๐—ฝ( ) โ€“ Removes and returns the last element.
๐Ÿด. ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ( ) โ€“ Removes all elements from the list.
๐Ÿต. ๐—ฝ๐—ผ๐—ฝ(๐Ÿญ) โ€“ Removes and returns the element at index 1.

Master these list methods to handle Python lists efficiently! ๐Ÿš€
๐Ÿ‘2
๐Ÿฐ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to break into data science in 2025โ€”without spending a single rupee?๐Ÿ’ฐ๐Ÿ‘จโ€๐Ÿ’ป

Youโ€™re in luck! Microsoft is offering powerful, beginner-friendly resources that teach you everything from Python fundamentals to AI and data analyticsโ€”for free๐Ÿคฉโœ”๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vCIrb

Level up your career in the booming field of dataโœ…๏ธ
๐Ÿ‘1
๐Ÿ”ฐ Python Set Methods
๐Ÿ‘2
๐Ÿ”ฐ Python String Methods
๐Ÿ‘2๐Ÿ‘Ž1
๐Ÿฐ ๐— ๐˜‚๐˜€๐˜-๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐˜๐˜‚๐—ฑ๐—ฒ๐—ป๐˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

If youโ€™re starting your data analytics journey, these 4 YouTube courses are pure gold โ€” and the best part? ๐Ÿ’ป๐Ÿคฉ

Theyโ€™re completely free๐Ÿ’ฅ๐Ÿ’ฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44DvNP1

Each course can help you build the right foundation for a successful tech careerโœ…๏ธ
๐Ÿ‘1
Must Study: These are the important Questions for Data Analyst โœ…



SQL
1. How do you handle NULL values in SQL queries, and why is it important?
2. What is the difference between INNER JOIN and OUTER JOIN, and when would you use each?
3. How do you implement transaction control in SQL Server?

Excel
1. How do you use pivot tables to analyze large datasets in Excel?
2. What are Excel's built-in functions for statistical analysis, and how do you use them?
3. How do you create interactive dashboards in Excel?

Power BI
1. How do you optimize Power BI reports for performance?
2. What is the role of DAX (Data Analysis Expressions) in Power BI, and how do you use it?
3. How do you handle real-time data streaming in Power BI?

Python
1. How do you use Pandas for data manipulation, and what are some advanced features?
2. How do you implement machine learning models in Python, from data preparation to deployment?
3. What are the best practices for handling large datasets in Python?

Data Visualization
1. How do you choose the right visualization technique for different types of data?
2. What is the importance of color theory in data visualization?
3. How do you use tools like Tableau or Power BI for advanced data storytelling?

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘3
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐—ง๐—ผ๐—ฝ ๐—ข๐—ฟ๐—ด๐—ฎ๐—ป๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

A power-packed selection of 100% free, certified courses from top institutions:

- Data Analytics โ€“ Cisco
- Digital Marketing โ€“ Google
- Python for AI โ€“ IBM/edX
- SQL & Databases โ€“ Stanford
- Generative AI โ€“ Google Cloud
- Machine Learning โ€“ Harvard

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 
 
https://pdlink.in/3FcwrZK
 
Master inโ€‘demand tech skills with these 6 certified, top-tier free courses
File Handling in Python ๐Ÿ‘†
๐Ÿ‘1
๐Ÿš€ ๐Ÿณ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ + ๐—Ÿ๐—ถ๐—ป๐—ธ๐—ฒ๐—ฑ๐—œ๐—ป ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐Ÿ˜

Gain globally recognized skills with Microsoft x LinkedIn Career Essentials โ€“ completely FREE!

๐ŸŽฏ Top Certifications:
๐Ÿ”น Generative AI
๐Ÿ”น Data Analysis
๐Ÿ”น Software Development
๐Ÿ”น Project Management
๐Ÿ”น Business Analysis
๐Ÿ”น System Administration
๐Ÿ”น Administrative Assistance

๐Ÿ“š 100% Free | Self-Paced | Industry-Aligned

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 
 
https://pdlink.in/46TZP2h
 
๐Ÿ’ผ Perfect for students, freshers & working professionals
๐Ÿ‘2
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘4
Forwarded from Artificial Intelligence
๐—ง๐—ถ๐—ฟ๐—ฒ๐—ฑ ๐—ผ๐—ณ ๐˜€๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐—ณ๐—ถ๐—ป๐—ฑ ๐—ด๐—ผ๐—ผ๐—ฑ ๐—”๐—œ/๐— ๐—Ÿ ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—ฝ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ?๐Ÿ˜

Stop wasting hours searching โ€” hereโ€™s a GOLDMINE ๐Ÿ’Ž

โœ… 500+ Real-World Projects with Code
โœ… Covers NLP, Computer Vision, Deep Learning, ML Pipelines
โœ… Beginner to Advanced Levels
โœ… Resume-Worthy, Interview-Ready!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45gTMU8

โœจSave this. Share this. Start building.โœ…๏ธ