Python Projects & Free Books
38.7K subscribers
592 photos
93 files
291 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
Machine Learning Algorithm
๐Ÿ‘2
Python Interview Questions:

Ready to test your Python skills? Letโ€™s get started! ๐Ÿ’ป


1. How to check if a string is a palindrome?

def is_palindrome(s):
return s == s[::-1]

print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False

2. How to find the factorial of a number using recursion?

def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)

print(factorial(5)) # 120

3. How to merge two dictionaries in Python?

dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}

# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}

# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2

print(merged_dict)

4. How to find the intersection of two lists?

list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]

intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]

5. How to generate a list of even numbers from 1 to 100?

even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)

6. How to find the longest word in a sentence?

def longest_word(sentence):
words = sentence.split()
return max(words, key=len)

print(longest_word("Python is a powerful language")) # "powerful"

7. How to count the frequency of elements in a list?

from collections import Counter

my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})

8. How to remove duplicates from a list while maintaining the order?

def remove_duplicates(lst):
return list(dict.fromkeys(lst))

my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]

9. How to reverse a linked list in Python?

class Node:
def __init__(self, data):
self.data = data
self.next = None

def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev

# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)

# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next

10. How to implement a simple binary search algorithm?

def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1

print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3


Here you can find essential Python Interview Resources๐Ÿ‘‡
https://t.me/pythonproz

Like for more resources like this ๐Ÿ‘ โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘3
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜๐—ผ ๐˜€๐—ต๐—ฎ๐—ฝ๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฐ๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ: ๐Ÿ‘‡

-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.

-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.

-> 3. Nail the Basics of Statistics & Probability
You canโ€™t call yourself a data scientist if you donโ€™t understand distributions, p-values, confidence intervals, and hypothesis testing.

-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.

-> 5. Learn Machine Learning the Right Way

Start simple:

Linear Regression

Logistic Regression

Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.


-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problemsโ€”donโ€™t just learn, apply.
Make a portfolio that speaks louder than your resume.

-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.

-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.


๐—ฌ๐—ผ๐˜‚ ๐—ฑ๐—ผ๐—ปโ€™๐˜ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ฒ๐—ฐ๐˜.
๐—ฌ๐—ผ๐˜‚ ๐—ท๐˜‚๐˜€๐˜ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ ๐—ฐ๐—ผ๐—ป๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐˜.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘4
๐Ÿ‘2
๐Ÿ“Š Top 10 Data Analytics Concepts Everyone Should Know ๐Ÿš€

1๏ธโƒฃ Data Cleaning ๐Ÿงน
Removing duplicates, fixing missing or inconsistent data.
๐Ÿ‘‰ Tools: Excel, Python (Pandas), SQL

2๏ธโƒฃ Descriptive Statistics ๐Ÿ“ˆ
Mean, median, mode, standard deviationโ€”basic measures to summarize data.
๐Ÿ‘‰ Used for understanding data distribution

3๏ธโƒฃ Data Visualization ๐Ÿ“Š
Creating charts and dashboards to spot patterns.
๐Ÿ‘‰ Tools: Power BI, Tableau, Matplotlib, Seaborn

4๏ธโƒฃ Exploratory Data Analysis (EDA) ๐Ÿ”
Identifying trends, outliers, and correlations through deep data exploration.
๐Ÿ‘‰ Step before modeling

5๏ธโƒฃ SQL for Data Extraction ๐Ÿ—ƒ๏ธ
Querying databases to retrieve specific information.
๐Ÿ‘‰ Focus on SELECT, JOIN, GROUP BY, WHERE

6๏ธโƒฃ Hypothesis Testing โš–๏ธ
Making decisions using sample data (A/B testing, p-value, confidence intervals).
๐Ÿ‘‰ Useful in product or marketing experiments

7๏ธโƒฃ Correlation vs Causation ๐Ÿ”—
Just because two things are related doesnโ€™t mean one causes the other!

8๏ธโƒฃ Data Modeling ๐Ÿง 
Creating models to predict or explain outcomes.
๐Ÿ‘‰ Linear regression, decision trees, clustering

9๏ธโƒฃ KPIs & Metrics ๐ŸŽฏ
Understanding business performance indicators like ROI, retention rate, churn.

๐Ÿ”Ÿ Storytelling with Data ๐Ÿ—ฃ๏ธ

Translating raw numbers into insights stakeholders can act on.
๐Ÿ‘‰ Use clear visuals, simple language, and real-world impact

โค๏ธ React for more
๐Ÿ‘1
Python Statements ๐Ÿ‘†
๐Ÿ‘5
Prepare for placement season in 6 months
๐Ÿ‘3
๐Ÿ”… Voice Recorder in Python
pip install sounddevice


import sounddevice
from scipy.io.wavfile import write
#sample_rate
fs=44100
#Ask to enter the recording time
second = int(input("Enter the Recording Time in second: "))
print("Recordingโ€ฆ\n")
record_voice = sounddevice.rec(int(second * fs),samplerate=fs,channels=2)
sounddevice.wait()
write("MyRecording.wav",fs,record_voice)
print("Recording is done Please check you folder to listen recording")


Join us for more -
https://t.me/pythonfreebootcamp
๐Ÿ‘5
โ€œLearn AIโ€ is everywhere. But where do the builders actually start? ๐Ÿ“ฑ

Hereโ€™s the real path, the courses, papers and repos that matter.

โœ… Videos:

โžก๏ธ LLM Introduction โ†’ https://lnkd.in/ernZFpvB
โžก๏ธ LLMs from Scratch - Stanford CS229 โ†’ https://lnkd.in/etUh6_mn
โžก๏ธ Agentic AI Overview โ†’https://lnkd.in/ecpmzAyq
โžก๏ธ Building and Evaluating Agents โ†’ https://lnkd.in/e5KFeZGW
โžก๏ธ Building Effective Agents โ†’ https://lnkd.in/eqxvBg79
โžก๏ธ Building Agents with MCP โ†’ https://lnkd.in/eZd2ym2K
โžก๏ธ Building an Agent from Scratch โ†’ https://lnkd.in/eiZahJGn

โœ… Courses:

โžก๏ธ HuggingFace's Agent Course โ†’ https://lnkd.in/e7dUTYuE
โžก๏ธ MCP with Anthropic โ†’ https://lnkd.in/eMEnkCPP
โžก๏ธ Building Vector DB with Pinecone โ†’ https://lnkd.in/eP2tMGVs
โžก๏ธ Vector DB from Embeddings to Apps โ†’ https://lnkd.in/eP2tMGVs
โžก๏ธ Agent Memory โ†’ https://lnkd.in/egC8h9_Z
โžก๏ธ Building and Evaluating RAG apps โ†’ https://lnkd.in/ewy3sApa
โžก๏ธ Building Browser Agents โ†’ https://lnkd.in/ewy3sApa
โžก๏ธ LLMOps โ†’ https://lnkd.in/ex4xnE8t
โžก๏ธ Evaluating AI Agents โ†’ https://lnkd.in/eBkTNTGW
โžก๏ธ Computer Use with Anthropic โ†’ https://lnkd.in/ebHUc-ZU
โžก๏ธ Multi-Agent Use โ†’ https://lnkd.in/e4f4HtkR
โžก๏ธ Improving LLM Accuracy โ†’ https://lnkd.in/eVUXGT4M
โžก๏ธ Agent Design Patterns โ†’ https://lnkd.in/euhUq3W9
โžก๏ธ Multi Agent Systems โ†’ https://lnkd.in/evBnavk9

Access all free courses: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g

โœ… Guides:

โžก๏ธ Google's Agent โ†’ https://lnkd.in/encAzwKf
โžก๏ธ Google's Agent Companion โ†’ https://lnkd.in/e3-XtYKg
โžก๏ธ Building Effective Agents by Anthropic โ†’ https://lnkd.in/egifJ_wJ
โžก๏ธ Claude Code Best practices โ†’ https://lnkd.in/eJnqfQju
โžก๏ธ OpenAI's Practical Guide to Building Agents โ†’ https://lnkd.in/e-GA-HRh

โœ… Repos:
โžก๏ธ GenAI Agents โ†’ https://lnkd.in/eAscvs_i
โžก๏ธ Microsoft's AI Agents for Beginners โ†’ https://lnkd.in/d59MVgic
โžก๏ธ Prompt Engineering Guide โ†’ https://lnkd.in/ewsbFwrP
โžก๏ธ AI Agent Papers โ†’ https://lnkd.in/esMHrxJX

โœ… Papers:
๐ŸŸก ReAct โ†’ https://lnkd.in/eZ-Z-WFb
๐ŸŸก Generative Agents โ†’ https://lnkd.in/eDAeSEAq
๐ŸŸก Toolformer โ†’ https://lnkd.in/e_Vcz5K9
๐ŸŸก Chain-of-Thought Prompting โ†’ https://lnkd.in/eRCT_Xwq
๐ŸŸก Tree of Thoughts โ†’ https://lnkd.in/eiadYm8S
๐ŸŸก Reflexion โ†’ https://lnkd.in/eggND2rZ
๐ŸŸก Retrieval-Augmented Generation Survey โ†’ https://lnkd.in/eARbqdYE

Access all free courses: https://whatsapp.com/channel/0029VbB8ROL4inogeP9o8E1l

Double Tap โค๏ธ For More
๐Ÿ‘5