๐ Python Cheatsheet: Master the Foundations & Beyond
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
๐4
Are you looking to become a machine learning engineer? ๐ค
The algorithm brought you to the right place! ๐
I created a free and comprehensive roadmap. Letโs go through this thread and explore what you need to know to become an expert machine learning engineer:
๐ Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Hereโs what you need to focus on:
- Basic probability concepts ๐ฒ
- Inferential statistics ๐
- Regression analysis ๐
- Experimental design & A/B testing ๐
- Bayesian statistics ๐ข
- Calculus ๐งฎ
- Linear algebra ๐
๐ Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations โ๏ธ
- Control flow statements (e.g., if-else, loops) ๐
- Functions and modules ๐ง
- Error handling and exceptions โ
- Basic data structures (e.g., lists, dictionaries, tuples) ๐๏ธ
- Object-oriented programming concepts ๐งฑ
- Basic work with APIs ๐
- Detailed data structures and algorithmic thinking ๐ง
๐งช Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas ๐
- Data visualization techniques to visualize variables ๐
- Feature extraction & engineering ๐ ๏ธ
- Encoding data (different types) ๐
โ๏ธ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees ๐
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering ๐ง
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients ๐น๏ธ
Solve two types of problems:
- Regression ๐
- Classification ๐งฉ
๐ง Neural Networks
Neural networks are like computer brains that learn from examples ๐ง , made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops ๐
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns ๐ผ๏ธ
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series ๐
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
๐ธ๏ธ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs ๐ผ๏ธ
- RNNs ๐
- LSTMs โณ
๐ Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models ๐๏ธ
- Automated Testing and Continuous Integration (CI) ๐
- Continuous Delivery and Deployment (CD) ๐
- Monitoring and Logging ๐ฅ๏ธ
- Experiment Tracking and Management ๐งช
- Feature Stores ๐๏ธ
- Data Pipeline and Workflow Orchestration ๐ ๏ธ
- Infrastructure as Code (IaC) ๐๏ธ
- Model Serving and APIs ๐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
The algorithm brought you to the right place! ๐
I created a free and comprehensive roadmap. Letโs go through this thread and explore what you need to know to become an expert machine learning engineer:
๐ Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Hereโs what you need to focus on:
- Basic probability concepts ๐ฒ
- Inferential statistics ๐
- Regression analysis ๐
- Experimental design & A/B testing ๐
- Bayesian statistics ๐ข
- Calculus ๐งฎ
- Linear algebra ๐
๐ Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations โ๏ธ
- Control flow statements (e.g., if-else, loops) ๐
- Functions and modules ๐ง
- Error handling and exceptions โ
- Basic data structures (e.g., lists, dictionaries, tuples) ๐๏ธ
- Object-oriented programming concepts ๐งฑ
- Basic work with APIs ๐
- Detailed data structures and algorithmic thinking ๐ง
๐งช Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas ๐
- Data visualization techniques to visualize variables ๐
- Feature extraction & engineering ๐ ๏ธ
- Encoding data (different types) ๐
โ๏ธ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees ๐
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering ๐ง
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients ๐น๏ธ
Solve two types of problems:
- Regression ๐
- Classification ๐งฉ
๐ง Neural Networks
Neural networks are like computer brains that learn from examples ๐ง , made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops ๐
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns ๐ผ๏ธ
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series ๐
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
๐ธ๏ธ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs ๐ผ๏ธ
- RNNs ๐
- LSTMs โณ
๐ Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models ๐๏ธ
- Automated Testing and Continuous Integration (CI) ๐
- Continuous Delivery and Deployment (CD) ๐
- Monitoring and Logging ๐ฅ๏ธ
- Experiment Tracking and Management ๐งช
- Feature Stores ๐๏ธ
- Data Pipeline and Workflow Orchestration ๐ ๏ธ
- Infrastructure as Code (IaC) ๐๏ธ
- Model Serving and APIs ๐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
๐1
๐๐ฐ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐๐ถ๐๐ต ๐ง๐ต๐ฒ๐๐ฒ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐! ๐ฅ
Are you preparing for a ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐? Hiring managers donโt just want to hear your answersโthey want to know if you truly understand data.
Here are ๐ณ๐ฟ๐ฒ๐พ๐๐ฒ๐ป๐๐น๐ ๐ฎ๐๐ธ๐ฒ๐ฑ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ (and what they really mean):
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐น๐ณ."
๐ What theyโre really asking: Are you relevant for this role?
โ Keep it conciseโhighlight your experience, tools (SQL, Power BI, etc.), and a key impact you made.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ต๐ฎ๐ป๐ฑ๐น๐ฒ ๐บ๐ฒ๐๐๐ ๐ฑ๐ฎ๐๐ฎ?"
๐ What theyโre really asking: Do you panic when you see missing values?
โ Show your structured approachโidentify issues, clean with Pandas/SQL, and document your process.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ฎ๐ฝ๐ฝ๐ฟ๐ผ๐ฎ๐ฐ๐ต ๐ฎ ๐ฑ๐ฎ๐๐ฎ ๐ฎ๐ป๐ฎ๐น๐๐๐ถ๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐?"
๐ What theyโre really asking: Do you have a methodology, or do you just wing it?
โ Use a structured approach: Define business needs โ Clean & explore data โ Generate insights โ Present effectively.
๐ "๐๐ฎ๐ป ๐๐ผ๐ ๐ฒ๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐ฎ ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ ๐ฐ๐ผ๐ป๐ฐ๐ฒ๐ฝ๐ ๐๐ผ ๐ฎ ๐ป๐ผ๐ป-๐๐ฒ๐ฐ๐ต๐ป๐ถ๐ฐ๐ฎ๐น
๐๐๐ฎ๐ธ๐ฒ๐ต๐ผ๐น๐ฑ๐ฒ๐ฟ?"
๐ What theyโre really asking: Can you simplify data without oversimplifying?
โ Use storytellingโfocus on actionable insights rather than jargon.
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐ฎ ๐๐ถ๐บ๐ฒ ๐๐ผ๐ ๐บ๐ฎ๐ฑ๐ฒ ๐ฎ ๐บ๐ถ๐๐๐ฎ๐ธ๐ฒ."
๐ What theyโre really asking: Can you learn from failure?
โ Own your mistake, explain how you fixed it, and share what you do differently now.
๐ก ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: The best candidates donโt just answer questionsโthey tell stories that demonstrate problem-solving, clarity, and impact.
๐ Save this for later & share with someone preparing for interviews!
Are you preparing for a ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐? Hiring managers donโt just want to hear your answersโthey want to know if you truly understand data.
Here are ๐ณ๐ฟ๐ฒ๐พ๐๐ฒ๐ป๐๐น๐ ๐ฎ๐๐ธ๐ฒ๐ฑ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ (and what they really mean):
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐น๐ณ."
๐ What theyโre really asking: Are you relevant for this role?
โ Keep it conciseโhighlight your experience, tools (SQL, Power BI, etc.), and a key impact you made.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ต๐ฎ๐ป๐ฑ๐น๐ฒ ๐บ๐ฒ๐๐๐ ๐ฑ๐ฎ๐๐ฎ?"
๐ What theyโre really asking: Do you panic when you see missing values?
โ Show your structured approachโidentify issues, clean with Pandas/SQL, and document your process.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ฎ๐ฝ๐ฝ๐ฟ๐ผ๐ฎ๐ฐ๐ต ๐ฎ ๐ฑ๐ฎ๐๐ฎ ๐ฎ๐ป๐ฎ๐น๐๐๐ถ๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐?"
๐ What theyโre really asking: Do you have a methodology, or do you just wing it?
โ Use a structured approach: Define business needs โ Clean & explore data โ Generate insights โ Present effectively.
๐ "๐๐ฎ๐ป ๐๐ผ๐ ๐ฒ๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐ฎ ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ ๐ฐ๐ผ๐ป๐ฐ๐ฒ๐ฝ๐ ๐๐ผ ๐ฎ ๐ป๐ผ๐ป-๐๐ฒ๐ฐ๐ต๐ป๐ถ๐ฐ๐ฎ๐น
๐๐๐ฎ๐ธ๐ฒ๐ต๐ผ๐น๐ฑ๐ฒ๐ฟ?"
๐ What theyโre really asking: Can you simplify data without oversimplifying?
โ Use storytellingโfocus on actionable insights rather than jargon.
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐ฎ ๐๐ถ๐บ๐ฒ ๐๐ผ๐ ๐บ๐ฎ๐ฑ๐ฒ ๐ฎ ๐บ๐ถ๐๐๐ฎ๐ธ๐ฒ."
๐ What theyโre really asking: Can you learn from failure?
โ Own your mistake, explain how you fixed it, and share what you do differently now.
๐ก ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: The best candidates donโt just answer questionsโthey tell stories that demonstrate problem-solving, clarity, and impact.
๐ Save this for later & share with someone preparing for interviews!
๐2
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐๐. ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ ๐๐. ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐. ๐ ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐
Think of them as data detectives.
โ ๐ ๐จ๐๐ฎ๐ฌ: Identifying patterns and building predictive models.
โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Machine learning, statistics, Python/R.
โ ๐๐จ๐จ๐ฅ๐ฌ: Jupyter Notebooks, TensorFlow, PyTorch.
โ ๐๐จ๐๐ฅ: Extract actionable insights from raw data.
๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Creating a recommendation system like Netflix.
๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ
The architects of data infrastructure.
โ ๐ ๐จ๐๐ฎ๐ฌ: Developing data pipelines, storage systems, and infrastructure. โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: SQL, Big Data technologies (Hadoop, Spark), cloud platforms.
โ ๐๐จ๐จ๐ฅ๐ฌ: Airflow, Kafka, Snowflake.
โ ๐๐จ๐๐ฅ: Ensure seamless data flow across the organization.
๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Designing a pipeline to handle millions of transactions in real-time.
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐
Data storytellers.
โ ๐ ๐จ๐๐ฎ๐ฌ: Creating visualizations, dashboards, and reports.
โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Excel, Tableau, SQL.
โ ๐๐จ๐จ๐ฅ๐ฌ: Power BI, Looker, Google Sheets.
โ ๐๐จ๐๐ฅ: Help businesses make data-driven decisions.
๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Analyzing campaign data to optimize marketing strategies.
๐ ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ
The connectors between data science and software engineering.
โ ๐ ๐จ๐๐ฎ๐ฌ: Deploying machine learning models into production.
โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Python, APIs, cloud services (AWS, Azure).
โ ๐๐จ๐จ๐ฅ๐ฌ: Kubernetes, Docker, FastAPI.
โ ๐๐จ๐๐ฅ: Make models scalable and ready for real-world applications. ๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Deploying a fraud detection model for a bank.
๐ช๐ต๐ฎ๐ ๐ฃ๐ฎ๐๐ต ๐ฆ๐ต๐ผ๐๐น๐ฑ ๐ฌ๐ผ๐ ๐๐ต๐ผ๐ผ๐๐ฒ?
โ Love solving complex problems?
โ Data Scientist
โ Enjoy working with systems and Big Data?
โ Data Engineer
โ Passionate about visual storytelling?
โ Data Analyst
โ Excited to scale AI systems?
โ ML Engineer
Each role is crucial and in demandโchoose based on your strengths and career aspirations.
Whatโs your ideal role?
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content
ENJOY LEARNING ๐๐
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐
Think of them as data detectives.
โ ๐ ๐จ๐๐ฎ๐ฌ: Identifying patterns and building predictive models.
โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Machine learning, statistics, Python/R.
โ ๐๐จ๐จ๐ฅ๐ฌ: Jupyter Notebooks, TensorFlow, PyTorch.
โ ๐๐จ๐๐ฅ: Extract actionable insights from raw data.
๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Creating a recommendation system like Netflix.
๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ
The architects of data infrastructure.
โ ๐ ๐จ๐๐ฎ๐ฌ: Developing data pipelines, storage systems, and infrastructure. โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: SQL, Big Data technologies (Hadoop, Spark), cloud platforms.
โ ๐๐จ๐จ๐ฅ๐ฌ: Airflow, Kafka, Snowflake.
โ ๐๐จ๐๐ฅ: Ensure seamless data flow across the organization.
๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Designing a pipeline to handle millions of transactions in real-time.
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐
Data storytellers.
โ ๐ ๐จ๐๐ฎ๐ฌ: Creating visualizations, dashboards, and reports.
โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Excel, Tableau, SQL.
โ ๐๐จ๐จ๐ฅ๐ฌ: Power BI, Looker, Google Sheets.
โ ๐๐จ๐๐ฅ: Help businesses make data-driven decisions.
๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Analyzing campaign data to optimize marketing strategies.
๐ ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ
The connectors between data science and software engineering.
โ ๐ ๐จ๐๐ฎ๐ฌ: Deploying machine learning models into production.
โ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Python, APIs, cloud services (AWS, Azure).
โ ๐๐จ๐จ๐ฅ๐ฌ: Kubernetes, Docker, FastAPI.
โ ๐๐จ๐๐ฅ: Make models scalable and ready for real-world applications. ๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐: Deploying a fraud detection model for a bank.
๐ช๐ต๐ฎ๐ ๐ฃ๐ฎ๐๐ต ๐ฆ๐ต๐ผ๐๐น๐ฑ ๐ฌ๐ผ๐ ๐๐ต๐ผ๐ผ๐๐ฒ?
โ Love solving complex problems?
โ Data Scientist
โ Enjoy working with systems and Big Data?
โ Data Engineer
โ Passionate about visual storytelling?
โ Data Analyst
โ Excited to scale AI systems?
โ ML Engineer
Each role is crucial and in demandโchoose based on your strengths and career aspirations.
Whatโs your ideal role?
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content
ENJOY LEARNING ๐๐
๐1
Top Libraries & Frameworks by Language ๐๐ป
โฏ Python
โโข Pandas โ Data Analysis
โโข NumPy โ Math & Arrays
โโข Scikit-learn โ Machine Learning
โโข TensorFlow / PyTorch โ Deep Learning
โโข Flask / Django โ Web Development
โโข OpenCV โ Image Processing
โฏ JavaScript / TypeScript
โโข React โ UI Development
โโข Vue โ Lightweight SPAs
โโข Angular โ Enterprise Apps
โโข Next.js โ Full-Stack Web
โโข Express โ Backend APIs
โโข Three.js โ 3D Web Graphics
โฏ Java
โโข Spring Boot โ Microservices
โโข Hibernate โ ORM
โโข Apache Maven โ Build Automation
โโข Apache Kafka โ Real-Time Data
โฏ C++
โโข Boost โ Utility Libraries
โโข Qt โ GUI Applications
โโข Unreal Engine โ Game Development
โฏ C#
โโข .NET / ASP.NET โ Web Apps
โโข Unity โ Game Development
โโข Entity Framework โ ORM
โฏ R
โโข ggplot2 โ Data Visualization
โโข dplyr โ Data Manipulation
โโข caret โ Machine Learning
โโข Shiny โ Interactive Dashboards
โฏ PHP
โโข Laravel โ Full-Stack Web
โโข Symfony โ Web Framework
โโข PHPUnit โ Testing
โฏ Go (Golang)
โโข Gin โ Web Framework
โโข Gorilla โ Web Toolkit
โโข GORM โ ORM for Go
โฏ Rust
โโข Actix โ Web Framework
โโข Rocket โ Web Development
โโข Tokio โ Async Runtime
Coding Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
React with โค๏ธ for more useful content
โฏ Python
โโข Pandas โ Data Analysis
โโข NumPy โ Math & Arrays
โโข Scikit-learn โ Machine Learning
โโข TensorFlow / PyTorch โ Deep Learning
โโข Flask / Django โ Web Development
โโข OpenCV โ Image Processing
โฏ JavaScript / TypeScript
โโข React โ UI Development
โโข Vue โ Lightweight SPAs
โโข Angular โ Enterprise Apps
โโข Next.js โ Full-Stack Web
โโข Express โ Backend APIs
โโข Three.js โ 3D Web Graphics
โฏ Java
โโข Spring Boot โ Microservices
โโข Hibernate โ ORM
โโข Apache Maven โ Build Automation
โโข Apache Kafka โ Real-Time Data
โฏ C++
โโข Boost โ Utility Libraries
โโข Qt โ GUI Applications
โโข Unreal Engine โ Game Development
โฏ C#
โโข .NET / ASP.NET โ Web Apps
โโข Unity โ Game Development
โโข Entity Framework โ ORM
โฏ R
โโข ggplot2 โ Data Visualization
โโข dplyr โ Data Manipulation
โโข caret โ Machine Learning
โโข Shiny โ Interactive Dashboards
โฏ PHP
โโข Laravel โ Full-Stack Web
โโข Symfony โ Web Framework
โโข PHPUnit โ Testing
โฏ Go (Golang)
โโข Gin โ Web Framework
โโข Gorilla โ Web Toolkit
โโข GORM โ ORM for Go
โฏ Rust
โโข Actix โ Web Framework
โโข Rocket โ Web Development
โโข Tokio โ Async Runtime
Coding Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
React with โค๏ธ for more useful content
๐2
๐ Real-World Data Analyst Tasks & How to Solve Them
As a Data Analyst, your job isnโt just about writing SQL queries or making dashboardsโitโs about solving business problems using data. Letโs explore some common real-world tasks and how you can handle them like a pro!
๐ Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
โ Solution (Using Pandas in Python):
๐ก Tip: Always check for inconsistent spellings and incorrect date formats!
๐ Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
โ Solution (Using SQL):
๐ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!
๐ Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
โ Solution (Using Power BI / Tableau):
๐ Add KPI Cards to show total sales & profit
๐ Use a Line Chart for monthly trends
๐ Create a Bar Chart for top-selling products
๐ Use Filters/Slicers for better interactivity
๐ก Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
As a Data Analyst, your job isnโt just about writing SQL queries or making dashboardsโitโs about solving business problems using data. Letโs explore some common real-world tasks and how you can handle them like a pro!
๐ Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
โ Solution (Using Pandas in Python):
import pandas as pd
df = pd.read_csv('sales_data.csv')
df.drop_duplicates(inplace=True) # Remove duplicate rows
df.fillna(0, inplace=True) # Fill missing values with 0
print(df.head())
๐ก Tip: Always check for inconsistent spellings and incorrect date formats!
๐ Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
โ Solution (Using SQL):
SELECT MONTH(SaleDate) AS Month, SUM(Quantity * Price) AS Total_Revenue
FROM Sales
GROUP BY MONTH(SaleDate)
ORDER BY Total_Revenue DESC;
๐ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!
๐ Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
โ Solution (Using Power BI / Tableau):
๐ Add KPI Cards to show total sales & profit
๐ Use a Line Chart for monthly trends
๐ Create a Bar Chart for top-selling products
๐ Use Filters/Slicers for better interactivity
๐ก Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐6