Python Projects & Free Books
38.7K subscribers
592 photos
93 files
291 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
List Comprehension in Python
๐Ÿ‘2
How to get job as python fresher?

1. Get Your Python Fundamentals Strong
You should have a clear understanding of Python syntax, statements, variables & operators, control structures, functions & modules, OOP concepts, exception handling, and various other concepts before going out for a Python interview.

2. Learn Python Frameworks
As a beginner, youโ€™re recommended to start with Django as it is considered the standard framework for Python by many developers. An adequate amount of experience with frameworks will not only help you to dive deeper into the Python world but will also help you to stand out among other Python freshers.

3. Build Some Relevant Projects
You can start it by building several minor projects such as Number guessing game, Hangman Game, Website Blocker, and many others. Also, you can opt to build few advanced-level projects once youโ€™ll learn several Python web frameworks and other trending technologies.

@crackingthecodinginterview

4. Get Exposure to Trending Technologies Using Python.
Python is being used with almost every latest tech trend whether it be Artificial Intelligence, Internet of Things (IOT), Cloud Computing, or any other. And getting exposure to these upcoming technologies using Python will not only make you industry-ready but will also give you an edge over others during a career opportunity.

5. Do an Internship & Grow Your Network.
You need to connect with those professionals who are already working in the same industry in which you are aspiring to get into such as Data Science, Machine learning, Web Development, etc.


Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
โŒจ๏ธ Python Tips & Tricks
๐Ÿ“Œ Python Cheatsheet: Master the Foundations & Beyond
Start learning Python โ†’

โฌ‡๏ธ Core Python Building Blocks

Basic Commands
โ†’ print() โ€“ Display output
โ†’ input() โ€“ Get user input
โ†’ len() โ€“ Get length of a data structure
โ†’ type() โ€“ Get variable type
โ†’ range() โ€“ Generate a sequence
โ†’ help() โ€“ Get documentation

Data Types
โ†’ int, float, bool, str โ€“ Numbers & text
โ†’ list, tuple, dict, set โ€“ Data collections

Control Structures
โ†’ if / elif / else โ€“ Conditional logic
โ†’ for, while โ€“ Loops
โ†’ break, continue, pass โ€“ Loop control

โฌ‡๏ธ Advanced Concepts

Functions & Classes
โ†’ def, return, lambda โ€“ Define functions
โ†’ class, init, self โ€“ Object-oriented programming

Modules
โ†’ import, from ... import โ€“ Reuse code

โฌ‡๏ธ Special Tools

Exception Handling
โ†’ try, except, finally, raise โ€“ Handle errors

File Handling
โ†’ open(), read(), write(), close() โ€“ Manage files

Decorators & Generators
โ†’ @decorator, yield โ€“ Extend or pause functions

List Comprehension
โ†’ [x for x in list if condition] โ€“ Create lists efficiently


Like for more โค๏ธ
๐Ÿ‘4
Are you looking to become a machine learning engineer? ๐Ÿค–
The algorithm brought you to the right place! ๐Ÿš€

I created a free and comprehensive roadmap. Letโ€™s go through this thread and explore what you need to know to become an expert machine learning engineer:

๐Ÿ“š Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Hereโ€™s what you need to focus on:

- Basic probability concepts ๐ŸŽฒ
- Inferential statistics ๐Ÿ“Š
- Regression analysis ๐Ÿ“ˆ
- Experimental design & A/B testing ๐Ÿ”
- Bayesian statistics ๐Ÿ”ข
- Calculus ๐Ÿงฎ
- Linear algebra ๐Ÿ” 

๐Ÿ Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

- Variables, data types, and basic operations โœ๏ธ
- Control flow statements (e.g., if-else, loops) ๐Ÿ”„
- Functions and modules ๐Ÿ”ง
- Error handling and exceptions โŒ
- Basic data structures (e.g., lists, dictionaries, tuples) ๐Ÿ—‚๏ธ
- Object-oriented programming concepts ๐Ÿงฑ
- Basic work with APIs ๐ŸŒ
- Detailed data structures and algorithmic thinking ๐Ÿง 

๐Ÿงช Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas ๐Ÿ”
- Data visualization techniques to visualize variables ๐Ÿ“‰
- Feature extraction & engineering ๐Ÿ› ๏ธ
- Encoding data (different types) ๐Ÿ”

โš™๏ธ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:

- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees ๐Ÿ“Š
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering ๐Ÿง 
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients ๐Ÿ•น๏ธ

Solve two types of problems:
- Regression ๐Ÿ“ˆ
- Classification ๐Ÿงฉ

๐Ÿง  Neural Networks
Neural networks are like computer brains that learn from examples ๐Ÿง , made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops ๐Ÿ”„
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns ๐Ÿ–ผ๏ธ
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series ๐Ÿ“š

In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.

๐Ÿ•ธ๏ธ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.

- CNNs ๐Ÿ–ผ๏ธ
- RNNs ๐Ÿ“
- LSTMs โณ

๐Ÿš€ Machine Learning Project Deployment

Machine learning engineers should dive into MLOps and project deployment.

Here are the must-have skills:

- Version Control for Data and Models ๐Ÿ—ƒ๏ธ
- Automated Testing and Continuous Integration (CI) ๐Ÿ”„
- Continuous Delivery and Deployment (CD) ๐Ÿšš
- Monitoring and Logging ๐Ÿ–ฅ๏ธ
- Experiment Tracking and Management ๐Ÿงช
- Feature Stores ๐Ÿ—‚๏ธ
- Data Pipeline and Workflow Orchestration ๐Ÿ› ๏ธ
- Infrastructure as Code (IaC) ๐Ÿ—๏ธ
- Model Serving and APIs ๐ŸŒ

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
๐—”๐—ฐ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€! ๐Ÿ”ฅ

Are you preparing for a ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„? Hiring managers donโ€™t just want to hear your answersโ€”they want to know if you truly understand data.

Here are ๐—ณ๐—ฟ๐—ฒ๐—พ๐˜‚๐—ฒ๐—ป๐˜๐—น๐˜† ๐—ฎ๐˜€๐—ธ๐—ฒ๐—ฑ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ (and what they really mean):

๐Ÿ“Œ "๐—ง๐—ฒ๐—น๐—น ๐—บ๐—ฒ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐˜†๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐—น๐—ณ."

๐Ÿ” What theyโ€™re really asking: Are you relevant for this role?

โœ… Keep it conciseโ€”highlight your experience, tools (SQL, Power BI, etc.), and a key impact you made.

๐Ÿ“Œ "๐—›๐—ผ๐˜„ ๐—ฑ๐—ผ ๐˜†๐—ผ๐˜‚ ๐—ต๐—ฎ๐—ป๐—ฑ๐—น๐—ฒ ๐—บ๐—ฒ๐˜€๐˜€๐˜† ๐—ฑ๐—ฎ๐˜๐—ฎ?"

๐Ÿ” What theyโ€™re really asking: Do you panic when you see missing values?

โœ… Show your structured approachโ€”identify issues, clean with Pandas/SQL, and document your process.

๐Ÿ“Œ "๐—›๐—ผ๐˜„ ๐—ฑ๐—ผ ๐˜†๐—ผ๐˜‚ ๐—ฎ๐—ฝ๐—ฝ๐—ฟ๐—ผ๐—ฎ๐—ฐ๐—ต ๐—ฎ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜?"

๐Ÿ” What theyโ€™re really asking: Do you have a methodology, or do you just wing it?

โœ… Use a structured approach: Define business needs โ†’ Clean & explore data โ†’ Generate insights โ†’ Present effectively.

๐Ÿ“Œ "๐—–๐—ฎ๐—ป ๐˜†๐—ผ๐˜‚ ๐—ฒ๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป ๐—ฎ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜… ๐—ฐ๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜ ๐˜๐—ผ ๐—ฎ ๐—ป๐—ผ๐—ป-๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—ฐ๐—ฎ๐—น
๐˜€๐˜๐—ฎ๐—ธ๐—ฒ๐—ต๐—ผ๐—น๐—ฑ๐—ฒ๐—ฟ?"

๐Ÿ” What theyโ€™re really asking: Can you simplify data without oversimplifying?

โœ… Use storytellingโ€”focus on actionable insights rather than jargon.

๐Ÿ“Œ "๐—ง๐—ฒ๐—น๐—น ๐—บ๐—ฒ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ฎ ๐˜๐—ถ๐—บ๐—ฒ ๐˜†๐—ผ๐˜‚ ๐—บ๐—ฎ๐—ฑ๐—ฒ ๐—ฎ ๐—บ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ."

๐Ÿ” What theyโ€™re really asking: Can you learn from failure?

โœ… Own your mistake, explain how you fixed it, and share what you do differently now.

๐Ÿ’ก ๐—ฃ๐—ฟ๐—ผ ๐—ง๐—ถ๐—ฝ: The best candidates donโ€™t just answer questionsโ€”they tell stories that demonstrate problem-solving, clarity, and impact.

๐Ÿ”„ Save this for later & share with someone preparing for interviews!
๐Ÿ‘2
๐Ÿ”ฐ Python Toolkit for Data Analysis
Machine Learning Algorithms and Frameworks
๐Ÿ‘2
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐˜ƒ๐˜€. ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ ๐˜ƒ๐˜€. ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐˜ƒ๐˜€. ๐— ๐—Ÿ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ

๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜

Think of them as data detectives.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Identifying patterns and building predictive models.
โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Machine learning, statistics, Python/R.
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Jupyter Notebooks, TensorFlow, PyTorch.
โ†’ ๐†๐จ๐š๐ฅ: Extract actionable insights from raw data.
๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Creating a recommendation system like Netflix.

๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ

The architects of data infrastructure.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Developing data pipelines, storage systems, and infrastructure. โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: SQL, Big Data technologies (Hadoop, Spark), cloud platforms.
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Airflow, Kafka, Snowflake.
โ†’ ๐†๐จ๐š๐ฅ: Ensure seamless data flow across the organization.
๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Designing a pipeline to handle millions of transactions in real-time.

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

Data storytellers.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Creating visualizations, dashboards, and reports.
โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Excel, Tableau, SQL.
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Power BI, Looker, Google Sheets.
โ†’ ๐†๐จ๐š๐ฅ: Help businesses make data-driven decisions.
๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Analyzing campaign data to optimize marketing strategies.

๐— ๐—Ÿ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ

The connectors between data science and software engineering.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Deploying machine learning models into production.
โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Python, APIs, cloud services (AWS, Azure).
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Kubernetes, Docker, FastAPI.
โ†’ ๐†๐จ๐š๐ฅ: Make models scalable and ready for real-world applications. ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Deploying a fraud detection model for a bank.

๐—ช๐—ต๐—ฎ๐˜ ๐—ฃ๐—ฎ๐˜๐—ต ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—–๐—ต๐—ผ๐—ผ๐˜€๐—ฒ?

โ˜‘ Love solving complex problems?
โ†’ Data Scientist
โ˜‘ Enjoy working with systems and Big Data?
โ†’ Data Engineer
โ˜‘ Passionate about visual storytelling?
โ†’ Data Analyst
โ˜‘ Excited to scale AI systems?
โ†’ ML Engineer

Each role is crucial and in demandโ€”choose based on your strengths and career aspirations.

Whatโ€™s your ideal role?

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
Top Libraries & Frameworks by Language ๐Ÿ“š๐Ÿ’ป

โฏ Python
โ€ƒโ€ข Pandas โžŸ Data Analysis
โ€ƒโ€ข NumPy โžŸ Math & Arrays
โ€ƒโ€ข Scikit-learn โžŸ Machine Learning
โ€ƒโ€ข TensorFlow / PyTorch โžŸ Deep Learning
โ€ƒโ€ข Flask / Django โžŸ Web Development
โ€ƒโ€ข OpenCV โžŸ Image Processing

โฏ JavaScript / TypeScript
โ€ƒโ€ข React โžŸ UI Development
โ€ƒโ€ข Vue โžŸ Lightweight SPAs
โ€ƒโ€ข Angular โžŸ Enterprise Apps
โ€ƒโ€ข Next.js โžŸ Full-Stack Web
โ€ƒโ€ข Express โžŸ Backend APIs
โ€ƒโ€ข Three.js โžŸ 3D Web Graphics

โฏ Java
โ€ƒโ€ข Spring Boot โžŸ Microservices
โ€ƒโ€ข Hibernate โžŸ ORM
โ€ƒโ€ข Apache Maven โžŸ Build Automation
โ€ƒโ€ข Apache Kafka โžŸ Real-Time Data

โฏ C++
โ€ƒโ€ข Boost โžŸ Utility Libraries
โ€ƒโ€ข Qt โžŸ GUI Applications
โ€ƒโ€ข Unreal Engine โžŸ Game Development

โฏ C#
โ€ƒโ€ข .NET / ASP.NET โžŸ Web Apps
โ€ƒโ€ข Unity โžŸ Game Development
โ€ƒโ€ข Entity Framework โžŸ ORM

โฏ R
โ€ƒโ€ข ggplot2 โžŸ Data Visualization
โ€ƒโ€ข dplyr โžŸ Data Manipulation
โ€ƒโ€ข caret โžŸ Machine Learning
โ€ƒโ€ข Shiny โžŸ Interactive Dashboards

โฏ PHP
โ€ƒโ€ข Laravel โžŸ Full-Stack Web
โ€ƒโ€ข Symfony โžŸ Web Framework
โ€ƒโ€ข PHPUnit โžŸ Testing

โฏ Go (Golang)
โ€ƒโ€ข Gin โžŸ Web Framework
โ€ƒโ€ข Gorilla โžŸ Web Toolkit
โ€ƒโ€ข GORM โžŸ ORM for Go

โฏ Rust
โ€ƒโ€ข Actix โžŸ Web Framework
โ€ƒโ€ข Rocket โžŸ Web Development
โ€ƒโ€ข Tokio โžŸ Async Runtime

Coding Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

React with โค๏ธ for more useful content
๐Ÿ‘2
๐Ÿ” Real-World Data Analyst Tasks & How to Solve Them

As a Data Analyst, your job isnโ€™t just about writing SQL queries or making dashboardsโ€”itโ€™s about solving business problems using data. Letโ€™s explore some common real-world tasks and how you can handle them like a pro!

๐Ÿ“Œ Task 1: Cleaning Messy Data

Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.

โœ… Solution (Using Pandas in Python):

import pandas as pd  
df = pd.read_csv('sales_data.csv')
df.drop_duplicates(inplace=True) # Remove duplicate rows
df.fillna(0, inplace=True) # Fill missing values with 0
print(df.head())


๐Ÿ’ก Tip: Always check for inconsistent spellings and incorrect date formats!


๐Ÿ“Œ Task 2: Analyzing Sales Trends

A company wants to know which months have the highest sales.

โœ… Solution (Using SQL):

SELECT MONTH(SaleDate) AS Month, SUM(Quantity * Price) AS Total_Revenue  
FROM Sales
GROUP BY MONTH(SaleDate)
ORDER BY Total_Revenue DESC;


๐Ÿ’ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!


๐Ÿ“Œ Task 3: Creating a Business Dashboard

Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.

โœ… Solution (Using Power BI / Tableau):

๐Ÿ‘‰ Add KPI Cards to show total sales & profit

๐Ÿ‘‰ Use a Line Chart for monthly trends

๐Ÿ‘‰ Create a Bar Chart for top-selling products

๐Ÿ‘‰ Use Filters/Slicers for better interactivity

๐Ÿ’ก Tip: Keep your dashboards clean, interactive, and easy to interpret!

Like this post for more content like this โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘6
Machine Learning Algorithm
๐Ÿ‘2