Python for Data Analysts
47.6K subscribers
482 photos
64 files
316 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Forwarded from Data Analytics
๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

Learn directly from industry leaders at Microsoft and LinkedIn Learning and gain in-demand skills to elevate your career

๐Ÿ“ˆ Donโ€™t miss this chance to build your skills, earn certifications, and get job-readyโ€”all for free.

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/41ODJMi

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ‘2
For data analysts working with Python, mastering these top 10 concepts is essential:

1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.

2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.

3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.

4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.

5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.

6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.

7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.

8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.

9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.

10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.

Give credits while sharing: https://t.me/pythonanalyst

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1๐Ÿฅฐ1
๐Ÿณ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Hereโ€™s your golden chance to upskill with free, industry-recognized certifications from Googleโ€”all without spending a rupee!๐Ÿ’ฐ๐Ÿ“Œ

These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ‡๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3H2YJX7

Tag them or share this post!โœ…๏ธ
๐Ÿ‘1
Python for Data Analytics - Quick Cheatsheet with Cod e Example ๐Ÿš€

1๏ธโƒฃ Data Manipulation with Pandas

import pandas as pd  
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)


2๏ธโƒฃ Numerical Operations with NumPy

import numpy as np  
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)


3๏ธโƒฃ Data Visualization with Matplotlib & Seaborn


import matplotlib.pyplot as plt  
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()


4๏ธโƒฃ Exploratory Data Analysis (EDA)

df.isnull().sum()  
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])


5๏ธโƒฃ Working with Databases (SQL + Python)

import sqlite3  
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)


React with โค๏ธ for more

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘5โค2
The Foundation of Data Science
๐Ÿ‘2โค1
Top AI Algorithms ๐Ÿ‘†โœ…
โค4๐Ÿ‘1
Numpy Cheatsheet ๐Ÿ“ฑ
๐Ÿ‘3โค1
Underrated Telegram Channel for Data Analysts ๐Ÿ‘‡๐Ÿ‘‡
https://t.me/sqlspecialist

Here, you will get free tutorials to learn SQL, Python, Power BI, Excel and many more

Hope you guys will like it ๐Ÿ˜„
โค2๐Ÿ‘2
๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐ข๐ง๐  ๐๐ž๐œ๐ž๐ฌ๐ฌ๐š๐ซ๐ฒ ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

๐‹๐จ๐š๐๐ข๐ง๐  ๐ญ๐ก๐ž ๐ƒ๐š๐ญ๐š๐ฌ๐ž๐ญ:

df = pd.read_csv('your_dataset.csv')

๐ˆ๐ง๐ข๐ญ๐ข๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐ˆ๐ง๐ฌ๐ฉ๐ž๐œ๐ญ๐ข๐จ๐ง:

1- View the first few rows:
df.head()

2- Summary of the dataset:
df.info()

3- Statistical summary:
df.describe()

๐‡๐š๐ง๐๐ฅ๐ข๐ง๐  ๐Œ๐ข๐ฌ๐ฌ๐ข๐ง๐  ๐•๐š๐ฅ๐ฎ๐ž๐ฌ:

1- Identify missing values:
df.isnull().sum()

2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()

๐ƒ๐š๐ญ๐š ๐•๐ข๐ฌ๐ฎ๐š๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง:

1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()

2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()

3- Pair plots:
sns.pairplot(df)
plt.show()

4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

๐‚๐š๐ญ๐ž๐ ๐จ๐ซ๐ข๐œ๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ:
Count plots for categorical features:

plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6
๐Ÿฑ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—”๐—ฑ๐—ฑ ๐˜๐—ผ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Looking to land an internship, secure a tech job, or start freelancing in 2025?๐Ÿ‘จโ€๐Ÿ’ป

Python projects are one of the best ways to showcase your skills and stand out in todayโ€™s competitive job market๐Ÿ—ฃ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kvrfiL

Stand out in todayโ€™s competitive job marketโœ…๏ธ
๐Ÿ‘4
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜† ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Ready to upskill in data science for free?๐Ÿš€

Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43GspSO

Take the first step towards your dream career!โœ…๏ธ
โค1๐Ÿ‘1
How to get job as python fresher?

1. Get Your Python Fundamentals Strong
You should have a clear understanding of Python syntax, statements, variables & operators, control structures, functions & modules, OOP concepts, exception handling, and various other concepts before going out for a Python interview.

2. Learn Python Frameworks
As a beginner, youโ€™re recommended to start with Django as it is considered the standard framework for Python by many developers. An adequate amount of experience with frameworks will not only help you to dive deeper into the Python world but will also help you to stand out among other Python freshers.

3. Build Some Relevant Projects
You can start it by building several minor projects such as Number guessing game, Hangman Game, Website Blocker, and many others. Also, you can opt to build few advanced-level projects once youโ€™ll learn several Python web frameworks and other trending technologies.

@crackingthecodinginterview

4. Get Exposure to Trending Technologies Using Python.
Python is being used with almost every latest tech trend whether it be Artificial Intelligence, Internet of Things (IOT), Cloud Computing, or any other. And getting exposure to these upcoming technologies using Python will not only make you industry-ready but will also give you an edge over others during a career opportunity.

5. Do an Internship & Grow Your Network.
You need to connect with those professionals who are already working in the same industry in which you are aspiring to get into such as Data Science, Machine learning, Web Development, etc.


Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค4๐Ÿ‘1๐Ÿฅฐ1
Essential Python Libraries for Data Science

- Numpy: Fundamental for numerical operations, handling arrays, and mathematical functions.

- SciPy: Complements Numpy with additional functionalities for scientific computing, including optimization and signal processing.

- Pandas: Essential for data manipulation and analysis, offering powerful data structures like DataFrames.

- Matplotlib: A versatile plotting library for creating static, interactive, and animated visualizations.

- Keras: A high-level neural networks API, facilitating rapid prototyping and experimentation in deep learning.

- TensorFlow: An open-source machine learning framework widely used for building and training deep learning models.

- Scikit-learn: Provides simple and efficient tools for data mining, machine learning, and statistical modeling.

- Seaborn: Built on Matplotlib, Seaborn enhances data visualization with a high-level interface for drawing attractive and informative statistical graphics.

- Statsmodels: Focuses on estimating and testing statistical models, providing tools for exploring data, estimating models, and statistical testing.

- NLTK (Natural Language Toolkit): A library for working with human language data, supporting tasks like classification, tokenization, stemming, tagging, parsing, and more.

These libraries collectively empower data scientists to handle various tasks, from data preprocessing to advanced machine learning implementations.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6
๐Ÿ‘‰The Ultimate Guide to the Pandas Library for Data Science in Python
๐Ÿ‘‡๐Ÿ‘‡

https://www.freecodecamp.org/news/the-ultimate-guide-to-the-pandas-library-for-data-science-in-python/amp/

A Visual Intro to NumPy and Data Representation
.
Link : ๐Ÿ‘‡๐Ÿ‘‡
https://jalammar.github.io/visual-numpy/

Matplotlib Cheatsheet ๐Ÿ‘‡๐Ÿ‘‡

https://github.com/rougier/matplotlib-cheatsheet

SQL Cheatsheet ๐Ÿ‘‡๐Ÿ‘‡

https://websitesetup.org/sql-cheat-sheet/
๐Ÿ‘2
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ง๐—–๐—ฆ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—™๐—ฟ๐—ฒ๐˜€๐—ต๐—ฒ๐—ฟ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—ง๐—ฎ๐—ธ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐Ÿ‘ฉโ€๐ŸŽ“Just Graduated or Job Hunting?๐Ÿ“Œ

If youโ€™re a fresher aiming to kickstart your career in 2025, these 3 free TCS courses are a must!๐ŸŽฏ๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mr0aPm

Each course also comes with a free certificateโœ…๏ธ
๐Ÿ‘2
Step-by-Step Approach to Learn Python
โžŠ Learn the Basics โ†’ Syntax, Variables, Data Types (int, float, string, boolean)
โ†“
โž‹ Control Flow โ†’ If-Else, Loops (For, While), List Comprehensions
โ†“
โžŒ Data Structures โ†’ Lists, Tuples, Sets, Dictionaries
โ†“
โž Functions & Modules โ†’ Defining Functions, Lambda Functions, Importing Modules
โ†“
โžŽ File Handling โ†’ Reading/Writing Files, CSV, JSON
โ†“
โž Object-Oriented Programming (OOP) โ†’ Classes, Objects, Inheritance, Polymorphism
โ†“
โž Error Handling & Debugging โ†’ Try-Except, Logging, Debugging Techniques
โ†“
โž‘ Advanced Topics โ†’ Regular Expressions, Multi-threading, Decorators, Generators

Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2โค1
๐Ÿ”ฐ๐Ÿ“– Python Libraries for Data Analytics
โค4๐Ÿ‘1๐Ÿฅฐ1
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—ง๐—ผ๐—ฝ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

If youโ€™re job hunting, switching careers, or just want to upgrade your skill set โ€” Google Skillshop is your go-to platform in 2025!

Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4dwlDT2

Enroll For FREE & Get Certified ๐ŸŽ“๏ธ
๐Ÿ‘1
Python Libraries & Frameworks
๐Ÿฅฐ4๐Ÿ‘2
Guys, Big Announcement!

Weโ€™ve officially hit 2 MILLION followers โ€” and itโ€™s time to take our Python journey to the next level!

Iโ€™m super excited to launch the 30-Day Python Coding Challenge โ€” perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.

This challenge is your daily dose of Python โ€” bite-sized lessons with hands-on projects so you actually code every day and level up fast.

Hereโ€™s what youโ€™ll learn over the next 30 days:

Week 1: Python Fundamentals

- Variables & Data Types (Build your own bio/profile script)

- Operators (Mini calculator to sharpen math skills)

- Strings & String Methods (Word counter & palindrome checker)

- Lists & Tuples (Manage a grocery list like a pro)

- Dictionaries & Sets (Create your own contact book)

- Conditionals (Make a guess-the-number game)

- Loops (Multiplication tables & pattern printing)

Week 2: Functions & Logic โ€” Make Your Code Smarter

- Functions (Prime number checker)

- Function Arguments (Tip calculator with custom tips)

- Recursion Basics (Factorials & Fibonacci series)

- Lambda, map & filter (Process lists efficiently)

- List Comprehensions (Filter odd/even numbers easily)

- Error Handling (Build a safe input reader)

- Review + Mini Project (Command-line to-do list)


Week 3: Files, Modules & OOP

- Reading & Writing Files (Save and load notes)

- Custom Modules (Create your own utility math module)

- Classes & Objects (Student grade tracker)

- Inheritance & OOP (RPG character system)

- Dunder Methods (Build a custom string class)

- OOP Mini Project (Simple bank account system)

- Review & Practice (Quiz app using OOP concepts)


Week 4: Real-World Python & APIs โ€” Build Cool Apps

- JSON & APIs (Fetch weather data)

- Web Scraping (Extract titles from HTML)

- Regular Expressions (Find emails & phone numbers)

- Tkinter GUI (Create a simple counter app)

- CLI Tools (Command-line calculator with argparse)

- Automation (File organizer script)

- Final Project (Choose, build, and polish your app!)

React with โค๏ธ if you're ready for this new journey

You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
โค2๐Ÿ‘2