Python for Data Analysts
47.6K subscribers
482 photos
64 files
316 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Feeling like your resume could use a boost? ๐Ÿš€

Letโ€™s make that happen with Microsoft Azure certifications that are not only perfect for beginners but also completely free!๐Ÿ”ฅ๐Ÿ’ฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4iVRmiQ

Essential skills for todayโ€™s tech-driven worldโœ…๏ธ
๐Ÿ‘2
Excel vs SQL vs Python (pandas):

1๏ธโƒฃ Filtering Data
โ†ณ Excel: =FILTER(A2:D100, B2:B100>50) (Excel 365 users)
โ†ณ SQL: SELECT * FROM table WHERE column > 50;
โ†ณ Python: df_filtered = df[df['column'] > 50]

2๏ธโƒฃ Sorting Data
โ†ณ Excel: Data โ†’ Sort (or =SORT(A2:A100, 1, TRUE))
โ†ณ SQL: SELECT * FROM table ORDER BY column ASC;
โ†ณ Python: df_sorted = df.sort_values(by="column")

3๏ธโƒฃ Counting Rows
โ†ณ Excel: =COUNTA(A:A)
โ†ณ SQL: SELECT COUNT(*) FROM table;
โ†ณ Python: row_count = len(df)

4๏ธโƒฃ Removing Duplicates
โ†ณ Excel: Data โ†’ Remove Duplicates
โ†ณ SQL: SELECT DISTINCT * FROM table;
โ†ณ Python: df_unique = df.drop_duplicates()

5๏ธโƒฃ Joining Tables
โ†ณ Excel: Power Query โ†’ Merge Queries (or VLOOKUP/XLOOKUP)
โ†ณ SQL: SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;
โ†ณ Python: df_merged = pd.merge(df1, df2, on="id")

6๏ธโƒฃ Ranking Data
โ†ณ Excel: =RANK.EQ(A2, $A$2:$A$100)
โ†ณ SQL: SELECT column, RANK() OVER (ORDER BY column DESC) AS rank FROM table;
โ†ณ Python: df["rank"] = df["column"].rank(method="min", ascending=False)

7๏ธโƒฃ Moving Average Calculation
โ†ณ Excel: =AVERAGE(B2:B4) (manually for rolling window)
โ†ณ SQL: SELECT date, AVG(value) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM table;
โ†ณ Python: df["moving_avg"] = df["value"].rolling(window=3).mean()

8๏ธโƒฃ Running Total
โ†ณ Excel: =SUM($B$2:B2) (drag down)
โ†ณ SQL: SELECT date, SUM(value) OVER (ORDER BY date) AS running_total FROM table;
โ†ณ Python: df["running_total"] = df["value"].cumsum()
๐Ÿ‘5
๐—ง๐—ผ๐—ฝ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ณ๐—ผ๐—ฟ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ โ€” ๐—ฅ๐—ฒ๐—ฐ๐—ฒ๐—ป๐˜๐—น๐˜† ๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐— ๐—ก๐—–๐˜€๐Ÿ˜

๐Ÿ“Œ Preparing for Python Interviews in 2025?๐Ÿ—ฃ

If youโ€™re aiming for roles in data analysis, backend development, or automation, Python is your key weaponโ€”and so is preparing with the right questions.๐Ÿ’ปโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3ZbAtrW

Crack your next Python interviewโœ…๏ธ
๐Ÿ‘2
Here is a powerful ๐—œ๐—ก๐—ง๐—˜๐—ฅ๐—ฉ๐—œ๐—˜๐—ช ๐—ง๐—œ๐—ฃ to help you land a job!

Most people who are skilled enough would be able to clear technical rounds with ease.

But when it comes to ๐—ฏ๐—ฒ๐—ต๐—ฎ๐˜ƒ๐—ถ๐—ผ๐—ฟ๐—ฎ๐—น/๐—ฐ๐˜‚๐—น๐˜๐˜‚๐—ฟ๐—ฒ ๐—ณ๐—ถ๐˜ rounds, some folks may falter and lose the potential offer.

Many companies schedule a behavioral round with a top-level manager in the organization to understand the culture fit (except for freshers).

One needs to clear this round to reach the salary negotiation round.

Here are some tips to clear such rounds:

1๏ธโƒฃ Once the HR schedules the interview, try to find the LinkedIn profile of the interviewer using the name in their email ID.

2๏ธโƒฃ Learn more about his/her past experiences and try to strike up a conversation on that during the interview.

3๏ธโƒฃ This shows that you have done good research and also helps strike a personal connection.

4๏ธโƒฃ Also, this is the round not just to evaluate if you're a fit for the company, but also to assess if the company is a right fit for you.

5๏ธโƒฃ Hence, feel free to ask many questions about your role and company to get a clear understanding before taking the offer. This shows that you really care about the role you're getting into.

๐Ÿ’ก ๐—•๐—ผ๐—ป๐˜‚๐˜€ ๐˜๐—ถ๐—ฝ - Be polite yet assertive in such interviews. It impresses a lot of senior folks.
๐Ÿ‘4
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—œ๐—ง ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ช๐—ถ๐˜๐—ต๐Ÿ˜

๐Ÿ’ป Want to Learn Coding but Donโ€™t Know Where to Start?๐ŸŽฏ

Whether youโ€™re a student, career switcher, or complete beginner, this curated list is your perfect launchpad into tech๐Ÿ’ป๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/437ow7Y

All The Best ๐ŸŽŠ
๐Ÿ‘1
0802-python-tutorial.pdf
614.5 KB
๐Ÿ“Œ PYTHON TUTORIALS
โค4
๐Ÿณ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐Ÿ˜

If you dream of a tech career but donโ€™t want to break the bank, youโ€™re in the right place.

These 7 hand-picked resources are free and help you build real, job-ready skillsโ€”from web development to machine learning and AI.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4j1lqbJ

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ‘2
Deloitte Recent Data Analyst Interview Questions Part-1
๐Ÿ‘2โค1
Deloitte Recent Data Analyst Interview Questions Part-2
โค1๐Ÿ‘1
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—œ๐—ง ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—ช๐—ถ๐—น๐—น ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

๐Ÿ“Š Want to Learn Data Analytics but Hate the High Price Tags?๐Ÿ’ฐ๐Ÿ“Œ

Good news: MIT is offering free, high-quality data analytics courses through their OpenCourseWare platform๐Ÿ’ป๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4iXNfS3

All The Best ๐ŸŽŠ
๐Ÿ‘2
WhatsApp is no longer a platform just for chat.

It's an educational goldmine.

If you do, youโ€™re sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.

I have curated the list of best WhatsApp channels to learn coding & data science for FREE

Free Courses with Certificate
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g

Jobs & Internship Opportunities
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

Web Development
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z

Python Free Books & Projects
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Java Free Resources
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s

Coding Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X

SQL For Data Analysis
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Power BI Resources
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Programming Free Resources
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

Data Science Projects
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Learn Data Science & Machine Learning
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Coding Projects
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VamhFMt7j6fx4bYsX908

Excel for Data Analyst
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4โค1
๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€๐Ÿ˜

Top Companies Offering FREE Certification Courses To Upskill In 2025 

Google:- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/4jpmI0I

Cisco :- https://pdlink.in/4fYr1xO

HP :- https://pdlink.in/3DrNsxI

IBM :- https://pdlink.in/44GsWoC

Qualc :- https://pdlink.in/3YrFTyK

TCS :- https://pdlink.in/4cHavCa

Infosys :- https://pdlink.in/4jsHZXf

Enroll For FREE & Get Certified ๐ŸŽ“
๐Ÿ‘3
๐–๐ก๐ฒ ๐„๐ฏ๐ž๐ซ๐ฒ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ญ & ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐ญ๐ข๐ฌ๐ญ ๐’๐ก๐จ๐ฎ๐ฅ๐ ๐Œ๐š๐ฌ๐ญ๐ž๐ซ ๐๐š๐ง๐๐š๐ฌ

When it comes to data analysis and machine learning, Pandas is non-negotiable. Itโ€™s the ๐Ÿ๐จ๐ฎ๐ง๐๐š๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐๐š๐ญ๐š ๐ฆ๐š๐ง๐ข๐ฉ๐ฎ๐ฅ๐š๐ญ๐ข๐จ๐ง ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง, turning messy datasets into meaningful insights โ€” and thatโ€™s exactly what makes it a ๐ ๐š๐ฆ๐ž-๐œ๐ก๐š๐ง๐ ๐ž๐ซ in real-world projects.

Recently, I explored an in-depth guide on ๐๐š๐ง๐๐š๐ฌ ๐Ÿ๐ซ๐จ๐ฆ ๐๐š๐ฌ๐ข๐œ๐ฌ ๐ญ๐จ ๐€๐๐ฏ๐š๐ง๐œ๐ž๐, and hereโ€™s what stood out:-

- Use len() to analyze string data (e.g., name lengths in the Titanic dataset).
- Create pivot tables for grouped insights (like finding top batting averages per team).
- Simplify categories (e.g., replacing โ€œmaleโ€/โ€œfemaleโ€ with โ€œMโ€/โ€œFโ€).
- Merge and join datasets seamlessly, even with missing values.

๐‡๐ž๐ซ๐žโ€™๐ฌ ๐ฐ๐ก๐ฒ ๐๐š๐ง๐๐š๐ฌ ๐ข๐ฌ ๐œ๐ซ๐ข๐ญ๐ข๐œ๐š๐ฅ ๐ข๐ง ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ & ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐œ๐ž:

- ๐ƒ๐š๐ญ๐š ๐‚๐ฅ๐ž๐š๐ง๐ข๐ง๐ :- Handle missing values, duplicates, and inconsistent formats.
- ๐„๐ฑ๐ฉ๐ฅ๐จ๐ซ๐š๐ญ๐จ๐ซ๐ฒ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ (๐„๐ƒ๐€):- Quickly summarize patterns and anomalies.
- ๐…๐ž๐š๐ญ๐ฎ๐ซ๐ž ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐ :- Create meaningful features to improve model performance.
- ๐ƒ๐š๐ญ๐š ๐ˆ๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐จ๐ง:- Combine multiple data sources with ease.
- ๐“๐ข๐ฆ๐ž ๐’๐ž๐ซ๐ข๐ž๐ฌ ๐’๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ:- Ideal for forecasting and trend analysis.

In short โ€” ๐๐š๐ง๐๐š๐ฌ ๐ญ๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐ฌ ๐ซ๐š๐ฐ ๐๐š๐ญ๐š ๐ข๐ง๐ญ๐จ ๐š๐œ๐ญ๐ข๐จ๐ง๐š๐›๐ฅ๐ž ๐ข๐ง๐ฌ๐ข๐ ๐ก๐ญ๐ฌ.

If youโ€™re learning Python for ML or analytics, make Pandas your priority.

๐Ÿ‘ ๐—Ÿ๐—ถ๐—ธ๐—ฒ for more such content.
๐Ÿ‘4
๐—–๐—ถ๐˜€๐—ฐ๐—ผ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฃ๐—ฟ๐—ผ๐—ณ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

 Stand out in the competitive job market.Cisco Networking Academy has you covered with free courses designed to enhance your professional skills.

โœ… Learn the Most In-Demand Skills:
โœ… Perfect for Everyone
โœ… Earn Recognized Certificates

๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡:- 

https://pdlink.in/3PeiTOW

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ‘1
Essential Pandas Functions for Data Analysis

Data Loading:

pd.read_csv() - Load data from a CSV file.

pd.read_excel() - Load data from an Excel file.


Data Inspection:

df.head(n) - View the first n rows.

df.info() - Get a summary of the dataset.

df.describe() - Generate summary statistics.


Data Manipulation:

df.drop(columns=['col1', 'col2']) - Remove specific columns.

df.rename(columns={'old_name': 'new_name'}) - Rename columns.

df['col'] = df['col'].apply(func) - Apply a function to a column.


Filtering and Sorting:

df[df['col'] > value] - Filter rows based on a condition.

df.sort_values(by='col', ascending=True) - Sort rows by a column.


Aggregation:

df.groupby('col').sum() - Group data and compute the sum.

df['col'].value_counts() - Count unique values in a column.


Merging and Joining:

pd.merge(df1, df2, on='key') - Merge two DataFrames.

pd.concat([df1, df2]) - Concatenate

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘2
Python is a popular programming language in the field of data analysis due to its versatility, ease of use, and extensive libraries for data manipulation, visualization, and analysis. Here are some key Python skills that are important for data analysts:

1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.

4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.

5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.

6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.

7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.

8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.

9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.

10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.

By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.
โค3๐Ÿ‘2
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐—ธ๐˜†๐—ฟ๐—ผ๐—ฐ๐—ธ๐—ฒ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Whether youโ€™re a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FdLMcv

Gain the skills to manage analytics projectsโœ…๏ธ
๐Ÿ‘2
Data Analyst INTERVIEW QUESTIONS AND ANSWERS
๐Ÿ‘‡๐Ÿ‘‡

1.Can you name the wildcards in Excel?

Ans: There are 3 wildcards in Excel that can ve used in formulas.

Asterisk (*) โ€“ 0 or more characters. For example, Ex* could mean Excel, Extra, Expertise, etc.

Question mark (?) โ€“ Represents any 1 character. For example, R?ain may mean Rain or Ruin.

Tilde (~) โ€“ Used to identify a wildcard character (~, *, ?). For example, If you need to find the exact phrase India* in a list. If you use India* as the search string, you may get any word with India at the beginning followed by different characters (such as Indian, Indiana). If you have to look for Indiaโ€ exclusively, use ~.

Hence, the search string will be india~*. ~ is used to ensure that the spreadsheet reads the following character as is, and not as a wildcard.


2.What is cascading filter in tableau?

Ans: Cascading filters can also be understood as giving preference to a particular filter and then applying other filters on previously filtered data source. Right-click on the filter you want to use as a main filter and make sure it is set as all values in dashboard then select the subsequent filter and select only relevant values to cascade the filters. This will improve the performance of the dashboard as you have decreased the time wasted in running all the filters over complete data source.


3.What is the difference between .twb and .twbx extension?

Ans:
A .twb file contains information on all the sheets, dashboards and stories, but it wonโ€™t contain any information regarding data source. Whereas .twbx file contains all the sheets, dashboards, stories and also compressed data sources. For saving a .twbx extract needs to be performed on the data source. If we forward .twb file to someone else than they will be able to see the worksheets and dashboards but wonโ€™t be able to look into the dataset.


4.What are the various Power BI versions?

Power BI Premium capacity-based license, for example, allows users with a free license to act on content in workspaces with Premium capacity. A user with a free license can only use the Power BI service to connect to data and produce reports and dashboards in My Workspace outside of Premium capacity. They are unable to exchange material or publish it in other workspaces. To process material, a Power BI license with a free or Pro per-user license only uses a shared and restricted capacity. Users with a Power BI Pro license can only work with other Power BI Pro users if the material is stored in that shared capacity. They may consume user-generated information, post material to app workspaces, share dashboards, and subscribe to dashboards and reports. Pro users can share material with users who donโ€™t have a Power BI Pro subscription while workspaces are at Premium capacity.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6
Exploratory Data Analysis ( EDA)
๐Ÿ‘4โค2
Python for Data Analysis: Must-Know Libraries ๐Ÿ‘‡๐Ÿ‘‡

Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.

๐Ÿ”ฅ Essential Python Libraries for Data Analysis:

โœ… Pandas โ€“ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.

๐Ÿ“Œ Example: Loading a CSV file and displaying the first 5 rows:

import pandas as pd df = pd.read_csv('data.csv') print(df.head()) 


โœ… NumPy โ€“ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.

๐Ÿ“Œ Example: Creating an array and performing basic operations:

import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average 


โœ… Matplotlib & Seaborn โ€“ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.

๐Ÿ“Œ Example: Creating a basic bar chart:

import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show() 


โœ… Scikit-Learn โ€“ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.

โœ… OpenPyXL โ€“ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.

๐Ÿ’ก Challenge for You!
Try writing a Python script that:
1๏ธโƒฃ Reads a CSV file
2๏ธโƒฃ Cleans missing data
3๏ธโƒฃ Creates a simple visualization

React with โ™ฅ๏ธ if you want me to post the script for above challenge! โฌ‡๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘5๐Ÿ‘1