5_6273832739867198534.pdf
71.3 KB
Numpy methods๐จโ๐ป๐ง
โค4๐4
Top Python Libraries for Data Analysis
Pandas: For data manipulation and analysis.
NumPy: For numerical computations and array operations.
Matplotlib: For creating static visualizations.
Seaborn: For statistical data visualization.
SciPy: For advanced mathematical and scientific computations.
Scikit-learn: For machine learning tasks.
Statsmodels: For statistical modeling and hypothesis testing.
Plotly: For interactive visualizations.
OpenPyXL: For working with Excel files.
PySpark: For big data processing.
Here you can find essential Python Interview Resources๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Pandas: For data manipulation and analysis.
NumPy: For numerical computations and array operations.
Matplotlib: For creating static visualizations.
Seaborn: For statistical data visualization.
SciPy: For advanced mathematical and scientific computations.
Scikit-learn: For machine learning tasks.
Statsmodels: For statistical modeling and hypothesis testing.
Plotly: For interactive visualizations.
OpenPyXL: For working with Excel files.
PySpark: For big data processing.
Here you can find essential Python Interview Resources๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐5โค1
Reality check on Data Analytics jobs:
โถ Most recruiters & employers are open to different backgrounds
โถ The "essential skills" are usually a mix of hard and soft skills
Desired hard skills:
โถ Excel - every job needs it
โถ SQL - data retrieval and manipulation
โถ Data Visualization - Tableau, Power BI, or Excel (Advanced)
โถ Python - Basics, Numpy, Pandas, Matplotlib, Seaborn, Scikit-learn, etc
Desired soft skills:
โถ Communication
โถ Teamwork & Collaboration
โถ Problem Solver
โถ Critical Thinking
If you're lacking in some of the hard skills, start learning them through online courses or engaging in personal projects.
But don't forget to highlight your soft skills in your job application - they're equally important.
In short: Excel + SQL + Data Viz + Python + Communication + Teamwork + Problem Solver + Critical Thinking = Data Analytics
โถ Most recruiters & employers are open to different backgrounds
โถ The "essential skills" are usually a mix of hard and soft skills
Desired hard skills:
โถ Excel - every job needs it
โถ SQL - data retrieval and manipulation
โถ Data Visualization - Tableau, Power BI, or Excel (Advanced)
โถ Python - Basics, Numpy, Pandas, Matplotlib, Seaborn, Scikit-learn, etc
Desired soft skills:
โถ Communication
โถ Teamwork & Collaboration
โถ Problem Solver
โถ Critical Thinking
If you're lacking in some of the hard skills, start learning them through online courses or engaging in personal projects.
But don't forget to highlight your soft skills in your job application - they're equally important.
In short: Excel + SQL + Data Viz + Python + Communication + Teamwork + Problem Solver + Critical Thinking = Data Analytics
๐6
Python for Data Analysis: Must-Know Libraries ๐๐
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
๐ฅ Essential Python Libraries for Data Analysis:
โ Pandas โ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
๐ Example: Loading a CSV file and displaying the first 5 rows:
โ NumPy โ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
๐ Example: Creating an array and performing basic operations:
โ Matplotlib & Seaborn โ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
๐ Example: Creating a basic bar chart:
โ Scikit-Learn โ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
โ OpenPyXL โ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
๐ก Challenge for You!
Try writing a Python script that:
1๏ธโฃ Reads a CSV file
2๏ธโฃ Cleans missing data
3๏ธโฃ Creates a simple visualization
React with โฅ๏ธ if you want me to post the script for above challenge! โฌ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
๐ฅ Essential Python Libraries for Data Analysis:
โ Pandas โ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
๐ Example: Loading a CSV file and displaying the first 5 rows:
import pandas as pd df = pd.read_csv('data.csv') print(df.head())
โ NumPy โ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
๐ Example: Creating an array and performing basic operations:
import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average
โ Matplotlib & Seaborn โ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
๐ Example: Creating a basic bar chart:
import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show()
โ Scikit-Learn โ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
โ OpenPyXL โ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
๐ก Challenge for You!
Try writing a Python script that:
1๏ธโฃ Reads a CSV file
2๏ธโฃ Cleans missing data
3๏ธโฃ Creates a simple visualization
React with โฅ๏ธ if you want me to post the script for above challenge! โฌ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐4
Interview list for Data Analytics Roles
SQL Essentials:
- SELECT statements including WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS: INNER, LEFT, RIGHT, FULL
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries, Common Table Expressions (WITH clause)
- CASE statements, advanced JOIN techniques, and Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK)
Excel Proficiency:
- Cell operations, formulas (SUMIFS, COUNTIFS, AVERAGEIFS, LOOKUPS)
- PivotTables, PivotCharts, Data validation, What-if analysis
- Advanced formulas, Data Model & Power Pivot
Power BI Skills:
- Data modeling (importing data, managing relationships)
- Data transformation with Power Query, DAX for calculated columns/measures
- Creating interactive reports and dashboards, visualizations
Data Warehousing:
-Concepts of OLAP vs. OLTP
-Star and Snowflake schema designs
-ETL processes: Extract, Transform, Load
-Data lake vs. data warehouse
Cloud Computing for Data Analytics:
-Benefits of cloud services (AWS, Azure, Google Cloud)
-Data storage solutions: S3, Azure Blob Storage, Google Cloud Storage
-Cloud-based data analytics tools: BigQuery, Redshift, Snowflake
-Cost management and optimization strategies
Python Programming:
- Basic syntax, control structures, data structures (lists, dictionaries)
- Pandas & NumPy for data manipulation: DataFrames, Series, groupby
-plotting with Matplotlib, Seaborn for visualization
Statistics Fundamentals:
- Mean, Median, Mode, Standard Deviation, Variance
- Probability distributions, Hypothesis Testing, P-values
- Confidence Intervals, Correlation, Simple Linear Regression
I have curated top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you ๐
SQL Essentials:
- SELECT statements including WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS: INNER, LEFT, RIGHT, FULL
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries, Common Table Expressions (WITH clause)
- CASE statements, advanced JOIN techniques, and Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK)
Excel Proficiency:
- Cell operations, formulas (SUMIFS, COUNTIFS, AVERAGEIFS, LOOKUPS)
- PivotTables, PivotCharts, Data validation, What-if analysis
- Advanced formulas, Data Model & Power Pivot
Power BI Skills:
- Data modeling (importing data, managing relationships)
- Data transformation with Power Query, DAX for calculated columns/measures
- Creating interactive reports and dashboards, visualizations
Data Warehousing:
-Concepts of OLAP vs. OLTP
-Star and Snowflake schema designs
-ETL processes: Extract, Transform, Load
-Data lake vs. data warehouse
Cloud Computing for Data Analytics:
-Benefits of cloud services (AWS, Azure, Google Cloud)
-Data storage solutions: S3, Azure Blob Storage, Google Cloud Storage
-Cloud-based data analytics tools: BigQuery, Redshift, Snowflake
-Cost management and optimization strategies
Python Programming:
- Basic syntax, control structures, data structures (lists, dictionaries)
- Pandas & NumPy for data manipulation: DataFrames, Series, groupby
-plotting with Matplotlib, Seaborn for visualization
Statistics Fundamentals:
- Mean, Median, Mode, Standard Deviation, Variance
- Probability distributions, Hypothesis Testing, P-values
- Confidence Intervals, Correlation, Simple Linear Regression
I have curated top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you ๐
๐2โค1
๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐ธ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ฆ๐๐ฎ๐ป๐ฑ ๐ข๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
As competition heats up across every industry, standing out to recruiters is more important than ever๐๐
The best part? You donโt need to spend a rupee to do it!๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4m0nNOD
๐ Start learning. Start standing outโ ๏ธ
As competition heats up across every industry, standing out to recruiters is more important than ever๐๐
The best part? You donโt need to spend a rupee to do it!๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4m0nNOD
๐ Start learning. Start standing outโ ๏ธ
๐1
Essential Python Libraries for Data Analytics ๐๐
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
6. PyTorch:
- Deep learning library, particularly popular for neural network research.
7. Django:
- High-level web framework for building robust, scalable web applications.
8. Flask:
- Lightweight web framework for building smaller web applications and APIs.
9. Requests:
- HTTP library for making HTTP requests.
10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
6. PyTorch:
- Deep learning library, particularly popular for neural network research.
7. Django:
- High-level web framework for building robust, scalable web applications.
8. Flask:
- Lightweight web framework for building smaller web applications and APIs.
9. Requests:
- HTTP library for making HTTP requests.
10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Many people still aren't fully utilizing the power of Telegram.
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started ๐๐
Latest Jobs & Internships: https://t.me/getjobss
Jobs Preparation Resources:
https://t.me/jobinterviewsprep
Web Development Jobs:
https://t.me/webdeveloperjob
Data Science Jobs:
https://t.me/datasciencej
Interview Tips:
https://t.me/Interview_Jobs
Data Analyst Jobs:
https://t.me/jobs_SQL
AI Jobs:
https://t.me/AIjobz
Remote Jobs:
https://t.me/jobs_us_uk
FAANG Jobs:
https://t.me/FAANGJob
Software Developer Jobs: https://t.me/internshiptojobs
If you found this helpful, donโt forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING๐๐
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started ๐๐
Latest Jobs & Internships: https://t.me/getjobss
Jobs Preparation Resources:
https://t.me/jobinterviewsprep
Web Development Jobs:
https://t.me/webdeveloperjob
Data Science Jobs:
https://t.me/datasciencej
Interview Tips:
https://t.me/Interview_Jobs
Data Analyst Jobs:
https://t.me/jobs_SQL
AI Jobs:
https://t.me/AIjobz
Remote Jobs:
https://t.me/jobs_us_uk
FAANG Jobs:
https://t.me/FAANGJob
Software Developer Jobs: https://t.me/internshiptojobs
If you found this helpful, donโt forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING๐๐
๐5โค3
Guys, Big Announcement!
Weโve officially hit 5 Lakh followers on WhatsApp and itโs time to level up together! โค๏ธ
I've launched a Python Learning Series โ designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step journey โ from basics to advanced โ with real examples and short quizzes after each topic to help you lock in the concepts.
Hereโs what weโll cover in the coming days:
Week 1: Python Fundamentals
- Variables & Data Types
- Operators & Expressions
- Conditional Statements (if, elif, else)
- Loops (for, while)
- Functions & Parameters
- Input/Output & Basic Formatting
Week 2: Core Python Skills
- Lists, Tuples, Sets, Dictionaries
- String Manipulation
- List Comprehensions
- File Handling
- Exception Handling
Week 3: Intermediate Python
- Lambda Functions
- Map, Filter, Reduce
- Modules & Packages
- Scope & Global Variables
- Working with Dates & Time
Week 4: OOP & Pythonic Concepts
- Classes & Objects
- Inheritance & Polymorphism
- Decorators (Intro level)
- Generators & Iterators
- Writing Clean & Readable Code
Week 5: Real-World & Interview Prep
- Web Scraping (BeautifulSoup)
- Working with APIs (Requests)
- Automating Tasks
- Data Analysis Basics (Pandas)
- Interview Coding Patterns
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1527
Weโve officially hit 5 Lakh followers on WhatsApp and itโs time to level up together! โค๏ธ
I've launched a Python Learning Series โ designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step journey โ from basics to advanced โ with real examples and short quizzes after each topic to help you lock in the concepts.
Hereโs what weโll cover in the coming days:
Week 1: Python Fundamentals
- Variables & Data Types
- Operators & Expressions
- Conditional Statements (if, elif, else)
- Loops (for, while)
- Functions & Parameters
- Input/Output & Basic Formatting
Week 2: Core Python Skills
- Lists, Tuples, Sets, Dictionaries
- String Manipulation
- List Comprehensions
- File Handling
- Exception Handling
Week 3: Intermediate Python
- Lambda Functions
- Map, Filter, Reduce
- Modules & Packages
- Scope & Global Variables
- Working with Dates & Time
Week 4: OOP & Pythonic Concepts
- Classes & Objects
- Inheritance & Polymorphism
- Decorators (Intro level)
- Generators & Iterators
- Writing Clean & Readable Code
Week 5: Real-World & Interview Prep
- Web Scraping (BeautifulSoup)
- Working with APIs (Requests)
- Automating Tasks
- Data Analysis Basics (Pandas)
- Interview Coding Patterns
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1527
โค2๐1