Python for Data Analysts
47.7K subscribers
492 photos
64 files
318 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Python Data Science Handbook

Python Data Science Handbook: full text in Jupyter Notebooks. This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks.

Creator: Jake Vanderplas
Starsโญ๏ธ: 39k
Fork: 17.1K
Repo: https://github.com/jakevdp/PythonDataScienceHandbook

For more, join https://t.me/pythonanalyst
๐Ÿ‘2
Essential NumPy Functions for Data Analysis

Array Creation:

np.array() - Create an array from a list.

np.zeros((rows, cols)) - Create an array filled with zeros.

np.ones((rows, cols)) - Create an array filled with ones.

np.arange(start, stop, step) - Create an array with a range of values.


Array Operations:

np.sum(array) - Calculate the sum of array elements.

np.mean(array) - Compute the mean.

np.median(array) - Calculate the median.

np.std(array) - Compute the standard deviation.


Indexing and Slicing:

array[start:stop] - Slice an array.

array[row, col] - Access a specific element.

array[:, col] - Select all rows for a column.


Reshaping and Transposing:

array.reshape(new_shape) - Reshape an array.

array.T - Transpose an array.


Random Sampling:

np.random.rand(rows, cols) - Generate random numbers in [0, 1).

np.random.randint(low, high, size) - Generate random integers.


Mathematical Operations:

np.dot(A, B) - Compute the dot product.

np.linalg.inv(A) - Compute the inverse of a matrix.

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘3โค1
๐Ÿ”ฐ Python if-else demo
โค3๐Ÿ‘1
Roadmap to become a Python Developer:

๐Ÿ“‚ Learn Python Basics (Syntax, Data Types, Loops)
โˆŸ๐Ÿ“‚ Learn Data Structures (Lists, Tuples, Dicts, Sets)
โˆŸ๐Ÿ“‚ Learn Functions & Modules
โˆŸ๐Ÿ“‚ Learn File Handling & Exceptions
โˆŸ๐Ÿ“‚ Learn OOP Concepts
โˆŸ๐Ÿ“‚ Learn Libraries (Pandas, NumPy, etc.)
โˆŸ๐Ÿ“‚ Learn Web Development (Flask / Django)
โˆŸ๐Ÿ“‚ Learn APIs & Database Integration
โˆŸ๐Ÿ“‚ Build Projects & Portfolio
โˆŸโœ… Apply for Job

React โค๏ธ for More
โค7
9 tips to improve your code:

- Declare variables close to usage
- Functions do 1 thing
- Avoid long functions
- Avoid long lines
- Don't repeat code
- Use descriptive variable/function names
- Use few arguments
- Simplify conditions (return age >17;)
- Remove unused code
Without errors, No-one can become a good programmer.
Errors are the most important phase of learning to code.
What are the common built-in data types in Python?

Python supports the below-mentioned built-in data types:

Immutable data types:

๐Ÿ‘‰Number
๐Ÿ‘‰String
๐Ÿ‘‰Tuple

Mutable data types:

๐Ÿ‘‰List
๐Ÿ‘‰Dictionary
๐Ÿ‘‰set
๐Ÿ‘2
Python Most Important Interview Questions

Question 1: Calculate the average stock price for Company X over the last 6 months.

Question 2: Identify the month with the highest total sales for Company Y using their monthly sales data.

Question 3: Find the maximum and minimum stock price for Company Z on any given day in the last year.

Question 4: Create a column in the DataFrame showing the percentage change in stock price from the previous day for Company X.

Question 5: Determine the number of days when the stock price of Company Y was above its 30-day moving average. Question

6: Compare the average stock price of Companies X and Z in the first quarter of the year.

#Data#
----------------------------------------------
import pandas as pd
data = {   'Date': pd.date_range(start='2023-01-01', periods=180, freq='D'),   'CompanyX_StockPrice': pd.np.random.randint(50, 150, 180),   'CompanyY_Sales': pd.np.random.randint(20000, 50000, 180),   'CompanyZ_StockPrice': pd.np.random.randint(70, 200, 180) }

df = pd.DataFrame(data)
๐Ÿ‘7
โŒจ๏ธ Calculate derivatives in Python
๐Ÿ‘3
Pandas Cheatsheet โœ…
โค6๐Ÿ‘2
๐—ง๐—–๐—ฆ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Want to kickstart your career in Data Analytics but donโ€™t know where to begin?๐Ÿ‘จโ€๐Ÿ’ป

TCS has your back with a completely FREE course designed just for beginnersโœ…

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jNMoEg

Just pure, job-ready learning๐Ÿ“
๐Ÿ”๐Ÿ’ป Top 10 Websites for Coding Practice:

๐Ÿš€ Hackerrank.com
๐Ÿ’ก Leetcode.com
โš” Codewars.com
๐Ÿ‹๏ธ Exercism.org
๐ŸŒ€ Codeforces.com
๐ŸŒ Hackerearth.com
๐Ÿ† Topcoder.com
โฒ๏ธ Coderbyte.com
๐Ÿงฎ Projecteuler.net
๐Ÿฝ๏ธ Codechef.com
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ โ€” ๐——๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜๐—น๐˜† ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ?๐Ÿ˜

Whether youโ€™re a student, job seeker, or just hungry to upskill โ€” these 5 beginner-friendly courses are your golden ticket. ๐ŸŽŸ๏ธ

Just career-boosting knowledge and certificates that make your resume pop๐Ÿ“„

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vL6br

All The Best ๐ŸŽŠ