Python for Data Analysts
47.6K subscribers
482 photos
64 files
316 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐ข๐ง๐  ๐๐ž๐œ๐ž๐ฌ๐ฌ๐š๐ซ๐ฒ ๐‹๐ข๐›๐ซ๐š๐ซ๐ข๐ž๐ฌ:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

๐‹๐จ๐š๐๐ข๐ง๐  ๐ญ๐ก๐ž ๐ƒ๐š๐ญ๐š๐ฌ๐ž๐ญ:

df = pd.read_csv('your_dataset.csv')

๐ˆ๐ง๐ข๐ญ๐ข๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐ˆ๐ง๐ฌ๐ฉ๐ž๐œ๐ญ๐ข๐จ๐ง:

1- View the first few rows:
df.head()

2- Summary of the dataset:
df.info()

3- Statistical summary:
df.describe()

๐‡๐š๐ง๐๐ฅ๐ข๐ง๐  ๐Œ๐ข๐ฌ๐ฌ๐ข๐ง๐  ๐•๐š๐ฅ๐ฎ๐ž๐ฌ:

1- Identify missing values:
df.isnull().sum()

2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()

๐ƒ๐š๐ญ๐š ๐•๐ข๐ฌ๐ฎ๐š๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง:

1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()

2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()

3- Pair plots:
sns.pairplot(df)
plt.show()

4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

๐‚๐š๐ญ๐ž๐ ๐จ๐ซ๐ข๐œ๐š๐ฅ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ:
Count plots for categorical features:

plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘7
For data analysts working with Python, mastering these top 10 concepts is essential:

1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.

2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.

3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.

4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.

5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.

6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.

7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.

8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.

9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.

10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.

Give credits while sharing: https://t.me/pythonanalyst

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6โค1
Python Cheatsheet ๐Ÿ‘†
โค1
Python Summary ๐Ÿ‘†
โค1๐Ÿ‘1
Before diving into detailed explanation of each Python concept, let's first go through some important Python libraries & core concepts that are essential for Data Analytics

1. Pandas

The heart of data analytics in Python.

Use it for:

- Reading data (read_csv, read_excel)

- Cleaning & manipulating data (dropna(), fillna(), groupby(), merge())

- Working with dataframes like an Excel sheet, but 100x faster

2. NumPy

Essential for numerical operations and large datasets.

Use it for:

- Arrays and matrix operations

- Faster math calculations

- Working with scientific data

3. Matplotlib

The go-to for data visualizations.

Use it to:

- Create line plots, bar charts, scatter plots

- Customize visuals for presentations

4. Seaborn

Built on top of Matplotlib โ€” much prettier and easier!

Use it to:

- Make statistical visualizations (histograms, boxplots, heatmaps)

- Great for EDA and correlation analysis

5. Scikit-learn

Used when you get into predictive analytics / machine learning.

Use it to:

- Build models (Linear Regression, Decision Trees, etc.)

- Preprocess and split data

- Evaluate model accuracy

6. OpenPyXL / xlrd / xlsxwriter

Helpful for working directly with Excel files.

Use it for:

- Reading/writing .xlsx files

- Automating Excel tasks


Here are some important Python Concepts for Data Analytics

- Data Types & Structures: Lists, dictionaries, and tuples are essential for storing and manipulating data.

- Loops & Conditions: For automating repetitive data cleaning tasks.

- Functions: Helps you avoid rewriting code โ€” useful for data pipelines.

- Lambda Functions: Great for quick, one-line operations on data.

- List Comprehensions: Make transformations fast and elegant.

- Working with Dates & Times: The datetime and pandas.to_datetime() functions are crucial for time series analysis.

- Regular Expressions (re module): For pattern matching in text data (emails, phone numbers, etc.)

Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
๐Ÿ‘5โค1
Python for Data Analysts
Before diving into detailed explanation of each Python concept, let's first go through some important Python libraries & core concepts that are essential for Data Analytics 1. Pandas The heart of data analytics in Python. Use it for: - Reading data (read_csvโ€ฆ
Let's start with the first Python Concept today

1. Data Structures

Before you analyze anything, you need to organize and store your data properly. Python offers four main data structures that every data analyst must master.

*Lists ([])*
A list is an ordered collection of items that can be changed (mutable).

*Example* :

scores = [85, 90, 78, 92]
print(scores[0]) # Output: 85

Use lists to store rows of data, filtered results, or time-series points.

*Tuples (())*
Tuples are like lists but immutable โ€” once created, they can't be modified.

*Example* :

coords = (12.97, 77.59)

Use them when data should not change, like a fixed location or record.

*Dictionaries* ({})
Dictionaries store data in key-value pairs. Theyโ€™re extremely useful when dealing with structured data.

Example:

person = {'name': 'Alice', 'age': 30}
print(person['name']) # Output: Alice

Use dictionaries for JSON data, mapping columns, or creating summary statistics.

*Sets (set())*
Sets are unordered collections with no duplicate values.

Example:

departments = set(['Sales', 'HR', 'Sales'])
print(departments) # Output: {'Sales', 'HR'}

Use sets when you need to find unique values in a dataset.

*Here are some important points to remember:*

- Lists help you store sequences like rows or values from a column.

- Dictionaries are great for quick lookups and mappings.

- Sets are useful when working with unique entries, like distinct categories.

- Tuples protect data from accidental modification.


*Youโ€™ll use these structures every day with pandas. For example, each row in a DataFrame can be treated like a dictionary, and columns often act like lists.*

React with โ™ฅ๏ธ if you want me to cover next important Python concept Loops & Conditions.

For some of you who are just starting with Python, this might feel a bit advanced. If you want to start with the extreme basics, you should go through these posts first: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1422

Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Data Analyst Jobs: https://whatsapp.com/channel/0029Vaxjq5a4dTnKNrdeiZ0J

Hope it helps :)
๐Ÿ‘4โค2
๐Ÿ”ฐ Deep Python Roadmap for Beginners ๐Ÿ

Setup & Installation ๐Ÿ–ฅโš™๏ธ
โ€ข Install Python, choose an IDE (VS Code, PyCharm)
โ€ข Set up virtual environments for project isolation ๐ŸŒŽ

Basic Syntax & Data Types ๐Ÿ“๐Ÿ”ข
โ€ข Learn variables, numbers, strings, booleans
โ€ข Understand comments, basic input/output, and simple expressions โœ๏ธ

Control Flow & Loops ๐Ÿ”„๐Ÿ”€
โ€ข Master conditionals (if, elif, else)
โ€ข Practice loops (for, while) and use control statements like break and continue ๐Ÿ‘ฎ

Functions & Scope โš™๏ธ๐ŸŽฏ

โ€ข Define functions with def and learn about parameters and return values
โ€ข Explore lambda functions, recursion, and variable scope ๐Ÿ“œ

Data Structures ๐Ÿ“Š๐Ÿ“š

โ€ข Work with lists, tuples, sets, and dictionaries
โ€ข Learn list comprehensions and built-in methods for data manipulation โš™๏ธ

Object-Oriented Programming (OOP) ๐Ÿ—๐Ÿ‘ฉโ€๐Ÿ’ป
โ€ข Understand classes, objects, and methods
โ€ข Dive into inheritance, polymorphism, and encapsulation ๐Ÿ”

React "โค๏ธ" for Part 2
โค5
SQL vs Python

SQL is great for managing and querying structured databases, especially when dealing with large datasets. It excels in tasks like filtering, sorting, and aggregating data.

Python, on the other hand, is a versatile programming language used for a broader range of tasks. In the context of data, Python is powerful for data manipulation, analysis, and machine learning. It offers libraries like Pandas for data manipulation, NumPy for numerical operations, and Scikit-Learn for machine learning.

In summary, SQL is essential for efficient database querying, while Python provides a more comprehensive solution for various data-related tasks, making them often used together in data-related workflows.

SQL Practice Questions with Answers -> https://t.me/learndataanalysis/596

Python Roadmap for Data Analysts -> https://t.me/pythonfreebootcamp/207
โค2๐Ÿ‘2
Data Scientist Roadmap
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| | `-- iv. Statistics
| |
| |-- b. Programming
| | |-- i. Python
| | | |-- 1. Syntax and Basic Concepts
| | | |-- 2. Data Structures
| | | |-- 3. Control Structures
| | | |-- 4. Functions
| | | `-- 5. Object-Oriented Programming
| | |
| | `-- ii. R (optional, based on preference)
| |
| |-- c. Data Manipulation
| | |-- i. Numpy (Python)
| | |-- ii. Pandas (Python)
| | `-- iii. Dplyr (R)
| |
| `-- d. Data Visualization
| |-- i. Matplotlib (Python)
| |-- ii. Seaborn (Python)
| `-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
| `-- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
| |-- a. Supervised Learning
| | |-- i. Regression
| | | |-- 1. Linear Regression
| | | `-- 2. Polynomial Regression
| | |
| | `-- ii. Classification
| | |-- 1. Logistic Regression
| | |-- 2. k-Nearest Neighbors
| | |-- 3. Support Vector Machines
| | |-- 4. Decision Trees
| | `-- 5. Random Forest
| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | | `-- 3. Hierarchical Clustering
| | |
| | `-- ii. Dimensionality Reduction
| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| | `-- 3. Linear Discriminant Analysis (LDA)
| |
| |-- c. Reinforcement Learning
| |-- d. Model Evaluation and Validation
| | |-- i. Cross-validation
| | |-- ii. Hyperparameter Tuning
| | `-- iii. Model Selection
| |
| `-- e. ML Libraries and Frameworks
| |-- i. Scikit-learn (Python)
| |-- ii. TensorFlow (Python)
| |-- iii. Keras (Python)
| `-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| | `-- ii. Multi-Layer Perceptron
| |
| |-- b. Convolutional Neural Networks (CNNs)
| | |-- i. Image Classification
| | |-- ii. Object Detection
| | `-- iii. Image Segmentation
| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| | `-- iii. Sentiment Analysis
| |
| |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
| | |-- i. Time Series Forecasting
| | `-- ii. Language Modeling
| |
| `-- e. Generative Adversarial Networks (GANs)
| |-- i. Image Synthesis
| |-- ii. Style Transfer
| `-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| | `-- ii. MapReduce
| |
| |-- b. Spark
| | |-- i. RDDs
| | |-- ii. DataFrames
| | `-- iii. MLlib
| |
| `-- c. NoSQL Databases
| |-- i. MongoDB
| |-- ii. Cassandra
| |-- iii. HBase
| `-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| | `-- iv. Shiny (R)
| |
| |-- b. Storytelling with Data
| `-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
| `-- e. Teamwork
|
`-- 8. Staying Updated and Continuous Learning
|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
๐Ÿ‘9
We have the Key to unlock AI-Powered Data Skills!

We have got some news for College grads & pros:

Level up with PW Skills' Data Analytics & Data Science with Gen AI course!

โœ… Real-world projects
โœ… Professional instructors
โœ… Flexible learning
โœ… Job Assistance

Ready for a data career boost? โžก๏ธ
Click Here for Data Science with Generative AI Course:

https://shorturl.at/j4lTD

Click Here for Data Analytics Course:
https://shorturl.at/7nrE5
๐Ÿ‘1
Python Variables: How to Define/Declare String Variable Types

What is a Variable in Python?
A Python variable is a reserved memory location to store values. In other words, a variable in a python program gives data to the computer for processing.

Python Variable Types
Every value in Python has a datatype. Different data types in Python are Numbers, List, Tuple, Strings, Dictionary, etc. Variables in Python can be declared by any name or even alphabets like a, aa, abc, etc.

How to Declare and use a Variable
Let see an example. We will define variable in Python and declare it as โ€œaโ€ and print it.

1 a=100
2 print (a)
๐Ÿ‘2
Python Data Science Handbook

Python Data Science Handbook: full text in Jupyter Notebooks. This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks.

Creator: Jake Vanderplas
Starsโญ๏ธ: 39k
Fork: 17.1K
Repo: https://github.com/jakevdp/PythonDataScienceHandbook

For more, join https://t.me/pythonanalyst
๐Ÿ‘2
Essential NumPy Functions for Data Analysis

Array Creation:

np.array() - Create an array from a list.

np.zeros((rows, cols)) - Create an array filled with zeros.

np.ones((rows, cols)) - Create an array filled with ones.

np.arange(start, stop, step) - Create an array with a range of values.


Array Operations:

np.sum(array) - Calculate the sum of array elements.

np.mean(array) - Compute the mean.

np.median(array) - Calculate the median.

np.std(array) - Compute the standard deviation.


Indexing and Slicing:

array[start:stop] - Slice an array.

array[row, col] - Access a specific element.

array[:, col] - Select all rows for a column.


Reshaping and Transposing:

array.reshape(new_shape) - Reshape an array.

array.T - Transpose an array.


Random Sampling:

np.random.rand(rows, cols) - Generate random numbers in [0, 1).

np.random.randint(low, high, size) - Generate random integers.


Mathematical Operations:

np.dot(A, B) - Compute the dot product.

np.linalg.inv(A) - Compute the inverse of a matrix.

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘3โค1
๐Ÿ”ฐ Python if-else demo
โค3๐Ÿ‘1
Roadmap to become a Python Developer:

๐Ÿ“‚ Learn Python Basics (Syntax, Data Types, Loops)
โˆŸ๐Ÿ“‚ Learn Data Structures (Lists, Tuples, Dicts, Sets)
โˆŸ๐Ÿ“‚ Learn Functions & Modules
โˆŸ๐Ÿ“‚ Learn File Handling & Exceptions
โˆŸ๐Ÿ“‚ Learn OOP Concepts
โˆŸ๐Ÿ“‚ Learn Libraries (Pandas, NumPy, etc.)
โˆŸ๐Ÿ“‚ Learn Web Development (Flask / Django)
โˆŸ๐Ÿ“‚ Learn APIs & Database Integration
โˆŸ๐Ÿ“‚ Build Projects & Portfolio
โˆŸโœ… Apply for Job

React โค๏ธ for More
โค7
9 tips to improve your code:

- Declare variables close to usage
- Functions do 1 thing
- Avoid long functions
- Avoid long lines
- Don't repeat code
- Use descriptive variable/function names
- Use few arguments
- Simplify conditions (return age >17;)
- Remove unused code
Without errors, No-one can become a good programmer.
Errors are the most important phase of learning to code.
What are the common built-in data types in Python?

Python supports the below-mentioned built-in data types:

Immutable data types:

๐Ÿ‘‰Number
๐Ÿ‘‰String
๐Ÿ‘‰Tuple

Mutable data types:

๐Ÿ‘‰List
๐Ÿ‘‰Dictionary
๐Ÿ‘‰set
๐Ÿ‘2
Python Most Important Interview Questions

Question 1: Calculate the average stock price for Company X over the last 6 months.

Question 2: Identify the month with the highest total sales for Company Y using their monthly sales data.

Question 3: Find the maximum and minimum stock price for Company Z on any given day in the last year.

Question 4: Create a column in the DataFrame showing the percentage change in stock price from the previous day for Company X.

Question 5: Determine the number of days when the stock price of Company Y was above its 30-day moving average. Question

6: Compare the average stock price of Companies X and Z in the first quarter of the year.

#Data#
----------------------------------------------
import pandas as pd
data = {   'Date': pd.date_range(start='2023-01-01', periods=180, freq='D'),   'CompanyX_StockPrice': pd.np.random.randint(50, 150, 180),   'CompanyY_Sales': pd.np.random.randint(20000, 50000, 180),   'CompanyZ_StockPrice': pd.np.random.randint(70, 200, 180) }

df = pd.DataFrame(data)
๐Ÿ‘7
โŒจ๏ธ Calculate derivatives in Python
๐Ÿ‘3