Python for Data Analysts
47.7K subscribers
492 photos
64 files
318 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโ€”at no cost.

Whether youโ€™re a student, graduate, or working professional, this platform has something valuable for everyone.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4jsHZXf

Enroll For FREE & Get Certified ๐ŸŽ“
Try these 5 steps ๐Ÿชœ...
Your English will be boom ๐Ÿ’ฅ

Best English learning groupโœ…

๐Ÿ’ฅ Don't forget to join
๐Ÿ’ฅ
๐Ÿ‘‡ ๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡
https://t.me/englishlearnerspro
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜, ๐—”๐—ช๐—ฆ, ๐—œ๐—•๐— , ๐—–๐—ถ๐˜€๐—ฐ๐—ผ, ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ. ๐Ÿ˜

- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3E2wYNr

Enroll For FREE & Get Certified ๐ŸŽ“
โค2
Lists ๐Ÿ†š Tuples ๐Ÿ†š Dictionaries

What's the difference?

Lists are mutable.
Tuples are immutable.
Dictionaries are associative.

When should you use each?

Lists:
โŸถ When you want to add or remove elements
โŸถ When you want to sort elements
โŸถ When you want to slice elements

Tuples:
โŸถ When you want a constant object
โŸถ When you want to send multiple in a function
โŸถ When you want to return multiple from a function

Dictionaries:
โŸถ When you want to map keys to values
โŸถ When you want to loop over the keys
โŸถ When you want to validate if key exists

Now, pick your weapon of mass data analysis and become a Python pro!

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4
๐Ÿฏ ๐—™๐—ฅ๐—˜๐—˜ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Taught by industry leaders (like Microsoft - 100% online and beginner-friendly

* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis 

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3R7asWB

Enroll Now & Get Certified ๐ŸŽ“
โค2
Python Programming Interview Questions for Entry Level Data Analyst

1. What is Python, and why is it popular in data analysis?

2. Differentiate between Python 2 and Python 3.

3. Explain the importance of libraries like NumPy and Pandas in data analysis.

4. How do you read and write data from/to files using Python?

5. Discuss the role of Matplotlib and Seaborn in data visualization with Python.

6. What are list comprehensions, and how do you use them in Python?

7. Explain the concept of object-oriented programming (OOP) in Python.


8. Discuss the significance of libraries like SciPy and Scikit-learn in data analysis.

9. How do you handle missing or NaN values in a DataFrame using Pandas?

10. Explain the difference between loc and iloc in Pandas DataFrame indexing.

11. Discuss the purpose and usage of lambda functions in Python.

12. What are Python decorators, and how do they work?

13. How do you handle categorical data in Python using the Pandas library?

14. Explain the concept of data normalization and its importance in data preprocessing.

15. Discuss the role of regular expressions (regex) in data cleaning with Python.

16. What are Python virtual environments, and why are they useful?

17. How do you handle outliers in a dataset using Python?

18. Explain the usage of the map and filter functions in Python.

19. Discuss the concept of recursion in Python programming.

20. How do you perform data analysis and visualization using Jupyter Notebooks?

Python Interview Q&A: https://topmate.io/coding/898340

Like for more โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2๐Ÿ‘2
Reverse a list in Python
๐Ÿ‘1๐Ÿฅฐ1
Learning Python in 2025 is like discovering a treasure chest ๐ŸŽ full of magical powers! Here's why it's valuable:

1. Versatility ๐ŸŒŸ: Python is used in web development, data analysis, artificial intelligence, machine learning, automation, and more. Whatever your interest, Python has an option for it.

2. Ease of Learning ๐Ÿ“š: Python's syntax is as clear as a sunny day!โ˜€๏ธ Its simple and readable syntax makes it beginner-friendly, perfect for aspiring programmers of all levels.

3. Community Support ๐Ÿค: Python has a vast community of programmers ready to help! Whether you're stuck on a problem or looking for guidance, there are countless forums, tutorials, and resources to tap into.

4. Job Opportunities ๐Ÿ’ผ: Companies are constantly seeking Python wizards to join their ranks! From tech giants to startups, the demand for Python skills is abundant.๐Ÿ”ฅ

5. Future-proofing ๐Ÿ”ฎ: With its widespread adoption and continuous growth, learning Python now sets you up for success in the ever-evolving world of tech.

6. Fun Projects ๐ŸŽ‰: Python makes coding feel like brewing potions! From creating games ๐ŸŽฎ to building robots ๐Ÿค–, the possibilities are endless.

So grab your keyboard and embark on a Python adventure! It's not just learning a language, it's unlocking a world of endless possibilities.
๐Ÿ‘2
Python for Data Science ๐Ÿ‘†
For data analysts working with Python, mastering these top 10 concepts is essential:

1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.

2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.

3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.

4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.

5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.

6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.

7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.

8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.

9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.

10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.

Give credits while sharing: https://t.me/pythonanalyst

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
๐—”๐—œ & ๐— ๐—Ÿ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Qualcommโ€”a global tech giant offering completely FREE courses that you can access anytime, anywhere.

โœ… 100% Free โ€” No hidden charges, subscriptions, or trials
โœ… Created by Industry Experts
โœ… Self-paced & Online โ€” Learn from anywhere, anytime

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3YrFTyK

Enroll Now & Get Certified ๐ŸŽ“
Data Analyst vs. Data Scientist - What's the Difference?

1. Data Analyst:
   - Role: Focuses on interpreting and analyzing data to help businesses make informed decisions.
   - Skills: Proficiency in SQL, Excel, data visualization tools (Tableau, Power BI), and basic statistical analysis.
   - Responsibilities: Data cleaning, performing EDA, creating reports and dashboards, and communicating insights to stakeholders.

2. Data Scientist:
   - Role: Involves building predictive models, applying machine learning algorithms, and deriving deeper insights from data.
   - Skills: Strong programming skills (Python, R), machine learning, advanced statistics, and knowledge of big data technologies (Hadoop, Spark).
   - Responsibilities: Data modeling, developing machine learning models, performing advanced analytics, and deploying models into production.

3. Key Differences:
   - Focus: Data Analysts are more focused on interpreting existing data, while Data Scientists are involved in creating new data-driven solutions.
   - Tools: Analysts typically use SQL, Excel, and BI tools, while Data Scientists work with programming languages, machine learning frameworks, and big data tools.
   - Outcomes: Analysts provide insights and recommendations, whereas Scientists build models that predict future trends and automate decisions.

30 Days of Data Science Series: https://t.me/datasciencefun/1708

Like this post if you need more ๐Ÿ‘โค๏ธ

Hope it helps ๐Ÿ™‚
๐Ÿ‘5