Sample email template to reach out to HRโs as fresher
I hope you will found this helpful ๐
Hi Jasneet,
I recently came across your LinkedIn post seeking a React.js developer intern, and I am writing to express my interest in the position at Airtel. As a recent graduate, I am eager to begin my career and am excited about the opportunity.
I am a quick learner and have developed a strong set of dynamic and user-friendly web applications using various technologies, including HTML, CSS, JavaScript, Bootstrap, React.js, Vue.js, PHP, and MySQL. I am also well-versed in creating reusable components, implementing responsive designs, and ensuring cross-browser compatibility.
I am confident that my eagerness to learn and strong work ethic will make me an asset to your team.
I have attached my resume for your review. Thank you for considering my application. I look forward to hearing from you soon.
Thanks!
I hope you will found this helpful ๐
๐6โค2
30-day roadmap to learn Python up to an intermediate level
Week 1: Python Basics
*Day 1-2:*
- Learn about Python, its syntax, and how to install Python on your computer.
- Write your first "Hello, World!" program.
- Understand variables and data types (integers, floats, strings).
*Day 3-4:*
- Explore basic operations (arithmetic, string concatenation).
- Learn about user input and how to use the
- Practice creating and using variables.
*Day 5-7:*
- Dive into control flow with if statements, else statements, and loops (for and while).
- Work on simple programs that involve conditions and loops.
Week 2: Functions and Modules
*Day 8-9:*
- Study functions and how to define your own functions using
- Learn about function arguments and return values.
*Day 10-12:*
- Explore built-in functions and libraries (e.g.,
- Understand how to import modules and use their functions.
*Day 13-14:*
- Practice writing functions for common tasks.
- Create a small project that utilizes functions and modules.
Week 3: Data Structures
*Day 15-17:*
- Learn about lists and their operations (slicing, appending, removing).
- Understand how to work with lists of different data types.
*Day 18-19:*
- Study dictionaries and their key-value pairs.
- Practice manipulating dictionary data.
*Day 20-21:*
- Explore tuples and sets.
- Understand when and how to use each data structure.
Week 4: Intermediate Topics
*Day 22-23:*
- Study file handling and how to read/write files in Python.
- Work on projects involving file operations.
*Day 24-26:*
- Learn about exceptions and error handling.
- Explore object-oriented programming (classes and objects).
*Day 27-28:*
- Dive into more advanced topics like list comprehensions and generators.
- Study Python's built-in libraries for web development (e.g., requests).
*Day 29-30:*
- Explore additional libraries and frameworks relevant to your interests (e.g., NumPy for data analysis, Flask for web development, or Pygame for game development).
- Work on a more complex project that combines your knowledge from the past weeks.
Throughout the 30 days, practice coding daily, and don't hesitate to explore Python's documentation and online resources for additional help. Learning Python is a dynamic process, so adapt the roadmap based on your progress and interests.
Best Programming Resources: https://topmate.io/coding/886839
ENJOY LEARNING ๐๐
Week 1: Python Basics
*Day 1-2:*
- Learn about Python, its syntax, and how to install Python on your computer.
- Write your first "Hello, World!" program.
- Understand variables and data types (integers, floats, strings).
*Day 3-4:*
- Explore basic operations (arithmetic, string concatenation).
- Learn about user input and how to use the
input()
function.- Practice creating and using variables.
*Day 5-7:*
- Dive into control flow with if statements, else statements, and loops (for and while).
- Work on simple programs that involve conditions and loops.
Week 2: Functions and Modules
*Day 8-9:*
- Study functions and how to define your own functions using
def
.- Learn about function arguments and return values.
*Day 10-12:*
- Explore built-in functions and libraries (e.g.,
len()
, random
, math
).- Understand how to import modules and use their functions.
*Day 13-14:*
- Practice writing functions for common tasks.
- Create a small project that utilizes functions and modules.
Week 3: Data Structures
*Day 15-17:*
- Learn about lists and their operations (slicing, appending, removing).
- Understand how to work with lists of different data types.
*Day 18-19:*
- Study dictionaries and their key-value pairs.
- Practice manipulating dictionary data.
*Day 20-21:*
- Explore tuples and sets.
- Understand when and how to use each data structure.
Week 4: Intermediate Topics
*Day 22-23:*
- Study file handling and how to read/write files in Python.
- Work on projects involving file operations.
*Day 24-26:*
- Learn about exceptions and error handling.
- Explore object-oriented programming (classes and objects).
*Day 27-28:*
- Dive into more advanced topics like list comprehensions and generators.
- Study Python's built-in libraries for web development (e.g., requests).
*Day 29-30:*
- Explore additional libraries and frameworks relevant to your interests (e.g., NumPy for data analysis, Flask for web development, or Pygame for game development).
- Work on a more complex project that combines your knowledge from the past weeks.
Throughout the 30 days, practice coding daily, and don't hesitate to explore Python's documentation and online resources for additional help. Learning Python is a dynamic process, so adapt the roadmap based on your progress and interests.
Best Programming Resources: https://topmate.io/coding/886839
ENJOY LEARNING ๐๐
๐3๐1
๐๐ฟ๐ฒ๐ฎ๐ธ ๐๐ป๐๐ผ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ โ ๐ก๐ผ ๐๐
๐ฐ๐๐๐ฒ๐!๐
Want to learn Data Analytics, Python, Power BI, and Machine Learning without spending a single rupee?
Hereโs your golden ticket! ๐๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3DMG9S5
๐ Bookmark & Share This With Someone Who Needs It!
Want to learn Data Analytics, Python, Power BI, and Machine Learning without spending a single rupee?
Hereโs your golden ticket! ๐๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3DMG9S5
๐ Bookmark & Share This With Someone Who Needs It!
๐3
๐ฐ ๐๐ฅ๐๐ ๐ฆ๐ค๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
- Introduction to SQL (Simplilearn)
- Intro to SQL (Kaggle)
- Introduction to Database & SQL Querying
- SQL for Beginners โ Microsoft SQL Server
Start Learning Today โ 4 Free SQL Courses
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/42nUsWr
Enroll For FREE & Get Certified ๐
- Introduction to SQL (Simplilearn)
- Intro to SQL (Kaggle)
- Introduction to Database & SQL Querying
- SQL for Beginners โ Microsoft SQL Server
Start Learning Today โ 4 Free SQL Courses
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/42nUsWr
Enroll For FREE & Get Certified ๐
๐2๐1
Here are 5 key Python libraries/ concepts that are particularly important for data analysts:
1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.
3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.
4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.
5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.
By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.
Credits: https://t.me/free4unow_backup
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.
3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.
4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.
5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.
By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.
Credits: https://t.me/free4unow_backup
Python Interview Q&A: https://topmate.io/coding/898340
Like for more โค๏ธ
ENJOY LEARNING ๐๐
๐6
๐๐ถ๐๐ฐ๐ผ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Upgrade Your Tech Skills in 2025โFor FREE!
๐น Introduction to Cybersecurity
๐น Networking Essentials
๐น Introduction to Modern AI
๐น Discovering Entrepreneurship
๐น Python for Beginners
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4chn8Us
Enroll For FREE & Get Certified ๐
Upgrade Your Tech Skills in 2025โFor FREE!
๐น Introduction to Cybersecurity
๐น Networking Essentials
๐น Introduction to Modern AI
๐น Discovering Entrepreneurship
๐น Python for Beginners
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4chn8Us
Enroll For FREE & Get Certified ๐
๐ฑ ๐๐ฅ๐๐ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
These 100% free & remote virtual internships will help you develop in-demand skills from top global companies!
No prior experience neededโjust sign up & start learning!
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4bajU4J
Enroll For FREE & Get Certified ๐
These 100% free & remote virtual internships will help you develop in-demand skills from top global companies!
No prior experience neededโjust sign up & start learning!
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4bajU4J
Enroll For FREE & Get Certified ๐
๐3
15 Best Project Ideas for Python : ๐
๐ Beginner Level:
1. Simple Calculator
2. To-Do List
3. Number Guessing Game
4. Dice Rolling Simulator
5. Word Counter
๐ Intermediate Level:
6. Weather App
7. URL Shortener
8. Movie Recommender System
9. Chatbot
10. Image Caption Generator
๐ Advanced Level:
11. Stock Market Analysis
12. Autonomous Drone Control
13. Music Genre Classification
14. Real-Time Object Detection
15. Natural Language Processing (NLP) Sentiment Analysis
๐ Beginner Level:
1. Simple Calculator
2. To-Do List
3. Number Guessing Game
4. Dice Rolling Simulator
5. Word Counter
๐ Intermediate Level:
6. Weather App
7. URL Shortener
8. Movie Recommender System
9. Chatbot
10. Image Caption Generator
๐ Advanced Level:
11. Stock Market Analysis
12. Autonomous Drone Control
13. Music Genre Classification
14. Real-Time Object Detection
15. Natural Language Processing (NLP) Sentiment Analysis
๐3โค1
Essential Python Libraries for Data Analytics ๐๐
Python Free Resources: https://t.me/pythondevelopersindia
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
6. PyTorch:
- Deep learning library, particularly popular for neural network research.
7. Django:
- High-level web framework for building robust, scalable web applications.
8. Flask:
- Lightweight web framework for building smaller web applications and APIs.
9. Requests:
- HTTP library for making HTTP requests.
10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Python Free Resources: https://t.me/pythondevelopersindia
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
6. PyTorch:
- Deep learning library, particularly popular for neural network research.
7. Django:
- High-level web framework for building robust, scalable web applications.
8. Flask:
- Lightweight web framework for building smaller web applications and APIs.
9. Requests:
- HTTP library for making HTTP requests.
10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐7โค3
๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Learn AI for FREE with these incredible courses by Google!
Whether youโre a beginner or looking to sharpen your skills, these resources will help you stay ahead in the tech game.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3FYbfGR
Enroll For FREE & Get Certified๐
Learn AI for FREE with these incredible courses by Google!
Whether youโre a beginner or looking to sharpen your skills, these resources will help you stay ahead in the tech game.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/3FYbfGR
Enroll For FREE & Get Certified๐
๐2
This media is not supported in your browser
VIEW IN TELEGRAM
Python Roadmap for Beginners 2025
โโโ ๐ Introduction to Python
โโโ ๐ฆ Modules, Comments, & Pip
โโโ ๐ข Variables & Data Basics
โโโ ๐ Python Data Types in Detail
โโโ ๐ Flow Control in Python
โโโ ๐ Loops in Python
โโโ ๐ String Operations (Advanced)
โโโ ๐ Functions in Python
โโโ ๐ File Handling in Python
โโโ ๐ OOPs
โโโ โ ๏ธ Exception Handling
โโโ ๐ Introduction to Python
โโโ ๐ฆ Modules, Comments, & Pip
โโโ ๐ข Variables & Data Basics
โโโ ๐ Python Data Types in Detail
โโโ ๐ Flow Control in Python
โโโ ๐ Loops in Python
โโโ ๐ String Operations (Advanced)
โโโ ๐ Functions in Python
โโโ ๐ File Handling in Python
โโโ ๐ OOPs
โโโ โ ๏ธ Exception Handling
โค8
๐ฐ ๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
These free, Microsoft-backed courses are a game-changer!
With these resources, youโll gain the skills and confidence needed to shine in the data analytics worldโall without spending a penny.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jpmI0I
Enroll For FREE & Get Certified๐
These free, Microsoft-backed courses are a game-changer!
With these resources, youโll gain the skills and confidence needed to shine in the data analytics worldโall without spending a penny.
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4jpmI0I
Enroll For FREE & Get Certified๐
๐1