Python for Data Analysts
47.5K subscribers
476 photos
64 files
316 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
5 Essential Skills Every Data Analyst Must Master in 2025

Data analytics continues to evolve rapidly, and as a data analyst, it's crucial to stay ahead of the curve. In 2025, the skills that were once optional are now essential to stand out in this competitive field. Here are five must-have skills for every data analyst this year.

1. Data Wrangling & Cleaning:
The ability to clean, organize, and prepare data for analysis is critical. No matter how sophisticated your tools are, they can't work with messy, inconsistent data. Mastering data wrangling—removing duplicates, handling missing values, and standardizing formats—will help you deliver accurate and actionable insights.

Tools to master: Python (Pandas), R, SQL

2. Advanced Excel Skills:
Excel remains one of the most widely used tools in the data analysis world. Beyond the basics, you should master advanced formulas, pivot tables, and Power Query. Excel continues to be indispensable for quick analyses and prototype dashboards.

Key skills to learn: VLOOKUP, INDEX/MATCH, Power Pivot, advanced charting

3. Data Visualization:
The ability to convey your findings through compelling data visuals is what sets top analysts apart. Learn how to use tools like Tableau, Power BI, or even D3.js for web-based visualization. Your visuals should tell a story that’s easy for stakeholders to understand at a glance.

Focus areas: Interactive dashboards, storytelling with data, advanced chart types (heat maps, scatter plots)

4. Statistical Analysis & Hypothesis Testing:
Understanding statistics is fundamental for any data analyst. Master concepts like regression analysis, probability theory, and hypothesis testing. This skill will help you not only describe trends but also make data-driven predictions and assess the significance of your findings.

Skills to focus on: T-tests, ANOVA, correlation, regression models

5. Machine Learning Basics:
While you don’t need to be a data scientist, having a basic understanding of machine learning algorithms is increasingly important. Knowledge of supervised vs unsupervised learning, decision trees, and clustering techniques will allow you to push your analysis to the next level.

Begin with: Linear regression, K-means clustering, decision trees (using Python libraries like Scikit-learn)

In 2025, data analysts must embrace a multi-faceted skill set that combines technical expertise, statistical knowledge, and the ability to communicate findings effectively.

Keep learning and adapting to these emerging trends to ensure you're ready for the challenges of tomorrow.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this 👍♥️

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
3
𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀: 𝟱 𝗦𝘁𝗲𝗽𝘀 𝘁𝗼 𝗦𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗝𝗼𝘂𝗿𝗻𝗲𝘆😍

Want to break into Data Science but don’t know where to begin?👨‍💻📌

You’re not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.💫📲

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3SU5FJ0

No prior experience needed!✅️
4
How to master Python from scratch🚀

1. Setup and Basics 🏁
   - Install Python 🖥️: Download Python and set it up.
   - Hello, World! 🌍: Write your first Hello World program.

2. Basic Syntax 📜
   - Variables and Data Types 📊: Learn about strings, integers, floats, and booleans.
   - Control Structures 🔄: Understand if-else statements, for loops, and while loops.
   - Functions 🛠️: Write reusable blocks of code.

3. Data Structures 📂
   - Lists 📋: Manage collections of items.
   - Dictionaries 📖: Store key-value pairs.
   - Tuples 📦: Work with immutable sequences.
   - Sets 🔢: Handle collections of unique items.

4. Modules and Packages 📦
   - Standard Library 📚: Explore built-in modules.
   - Third-Party Packages 🌐: Install and use packages with pip.

5. File Handling 📁
   - Read and Write Files 📝
   - CSV and JSON 📑

6. Object-Oriented Programming 🧩
   - Classes and Objects 🏛️
   - Inheritance and Polymorphism 👨‍👩‍👧

7. Web Development 🌐
   - Flask 🍼: Start with a micro web framework.
   - Django 🦄: Dive into a full-fledged web framework.

8. Data Science and Machine Learning 🧠
   - NumPy 📊: Numerical operations.
   - Pandas 🐼: Data manipulation and analysis.
   - Matplotlib 📈 and Seaborn 📊: Data visualization.
   - Scikit-learn 🤖: Machine learning.

9. Automation and Scripting 🤖
   - Automate Tasks 🛠️: Use Python to automate repetitive tasks.
   - APIs 🌐: Interact with web services.

10. Testing and Debugging 🐞
    - Unit Testing 🧪: Write tests for your code.
    - Debugging 🔍: Learn to debug efficiently.

11. Advanced Topics 🚀
    - Concurrency and Parallelism 🕒
    - Decorators 🌀 and Generators ⚙️
    - Web Scraping 🕸️: Extract data from websites using BeautifulSoup and Scrapy.

12. Practice Projects 💡
    - Calculator 🧮
    - To-Do List App 📋
    - Weather App ☀️
    - Personal Blog 📝

13. Community and Collaboration 🤝
    - Contribute to Open Source 🌍
    - Join Coding Communities 💬
    - Participate in Hackathons 🏆

14. Keep Learning and Improving 📈
    - Read Books 📖: Like "Automate the Boring Stuff with Python".
    - Watch Tutorials 🎥: Follow video courses and tutorials.
    - Solve Challenges 🧩: On platforms like LeetCode, HackerRank, and CodeWars.

15. Teach and Share Knowledge 📢
    - Write Blogs ✍️
    - Create Video Tutorials 📹
    - Mentor Others 👨‍🏫

I have curated the best interview resources to crack Python Interviews 👇👇
https://topmate.io/coding/898340

Hope you'll like it

Like this post if you need more resources like this 👍❤️
8
𝗧𝗼𝗽 𝗧𝗲𝗰𝗵 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 - 𝗖𝗿𝗮𝗰𝗸 𝗬𝗼𝘂𝗿 𝗡𝗲𝘅𝘁 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄😍

𝗦𝗤𝗟:- https://pdlink.in/3SMHxaZ

𝗣𝘆𝘁𝗵𝗼𝗻 :- https://pdlink.in/3FJhizk

𝗝𝗮𝘃𝗮  :- https://pdlink.in/4dWkAMf

𝗗𝗦𝗔 :- https://pdlink.in/3FsDA8j

 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :- https://pdlink.in/4jLOJ2a

𝗣𝗼𝘄𝗲𝗿 𝗕𝗜 :-  https://pdlink.in/4dFem3o

𝗖𝗼𝗱𝗶𝗻𝗴 :- https://pdlink.in/3F00oMw

Get Your Dream Tech Job In Your Dream Company💫
1
Python Methods
4👍1
Python for everything 👆
4👍1
🔰 Python Packages For Data Science in 2024-25
3
𝟳 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 & 𝗣𝗿𝗮𝗰𝘁𝗶𝗰𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗼𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍

💻 You don’t need to spend a rupee to master Python!🐍

Whether you’re an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4l5XXY2

Enjoy Learning ✅️
2
What seperates a good 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 from a great one?

The journey to becoming an exceptional data analyst requires mastering a blend of technical and soft skills.

Technical skills:
- Querying Data with SQL
- Data Visualization (Tableau/PowerBI)
- Data Storytelling and Reporting
- Data Exploration and Analytics
- Data Modeling

Soft Skills:
- Problem Solving
- Communication
- Business Acumen
- Curiosity
- Critical Thinking
- Learning Mindset

But how do you develop these soft skills?

◆ Tackle real-world data projects or case studies. The more complex, the better.

◆ Practice explaining your analysis to non-technical audiences. If they understand, you’ve nailed it!

◆ Learn how industries use data for decision-making. Align your analysis with business outcomes.

◆ Stay curious, ask 'why,' and dig deeper into your data. Don’t settle for surface-level insights.

◆ Keep evolving. Attend webinars, read books, or engage with industry experts regularly.
2
Call for papers on AI to AI Journey* conference journal has started!
Prize for the best scientific paper - 1 million roubles!


Selected papers will be published in the scientific journal Doklady Mathematics.

📖 The journal:
•  Indexed in the largest bibliographic databases of scientific citations
•  Accessible to an international audience and published in the world’s digital libraries

Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!

More detailed information can be found in the Selection Rules -> AI Journey

*AI Journey - a major online conference in the field of AI technologies
3👍1
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲😍

Dreaming of a career in Data Analytics but don’t know where to begin?

 The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4kPowBj

Enroll For FREE & Get Certified ✅️
2
Machine Learning Interview Questions.pdf.pdf
194.7 KB
📌 MACHINE LEARNING INTERVIEW QUESTIONS
1
SQL INTERVIEW Questions

Explain the concept of window functions in SQL. Provide examples to illustrate their usage.

Answer:

Window Functions:
Window functions perform calculations across a set of table rows related to the current row. Unlike aggregate functions, window functions do not group rows into a single output row; instead, they return a value for each row in the query result.

Types of Window Functions:
1. Aggregate Window Functions: Compute aggregate values like SUM, AVG, COUNT, etc.
2. Ranking Window Functions: Assign a rank to each row, such as RANK(), DENSE_RANK(), and ROW_NUMBER().
3. Analytic Window Functions: Perform calculations like LEAD(), LAG(), FIRST_VALUE(), and LAST_VALUE().

Syntax:
SELECT column_name, 
window_function() OVER (PARTITION BY column_name ORDER BY column_name)
FROM table_name;

Examples:

1. Using ROW_NUMBER():
Assign a unique number to each row within a partition of the result set.

   SELECT employee_name, department_id, salary,
ROW_NUMBER() OVER (PARTITION BY department_id ORDER BY salary DESC) AS rank
FROM employees;

This query ranks employees within each department based on their salary in descending order.

2. Using AVG() with OVER():
Calculate the average salary within each department without collapsing the result set.

   SELECT employee_name, department_id, salary,
AVG(salary) OVER (PARTITION BY department_id) AS avg_salary
FROM employees;

This query returns the average salary for each department along with each employee's salary.

3. Using LEAD():
Access the value of a subsequent row in the result set.

   SELECT employee_name, department_id, salary,
LEAD(salary, 1) OVER (PARTITION BY department_id ORDER BY salary) AS next_salary
FROM employees;

This query retrieves the salary of the next employee within the same department based on the current sorting order.

4. Using RANK():
Assign a rank to each row within the partition, with gaps in the ranking values if there are ties.

   SELECT employee_name, department_id, salary,
RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS rank
FROM employees;

This query ranks employees within each department by their salary in descending order, leaving gaps for ties.

Tip: Window functions are powerful for performing calculations across a set of rows while retaining the individual rows. They are useful for running totals, moving averages, ranking, and accessing data from other rows within the same result set.

Go though SQL Learning Series to refresh your basics

Share with credits: https://t.me/sqlspecialist

Like this post if you want me to continue SQL Interview Preparation Series 👍❤️

Hope it helps :)
6
𝟰 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗦𝗤𝗟 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍

Want to break into Data Analytics?💫

It all starts with SQL — the language every data analyst needs to master. Whether you’re analyzing trends, pulling business reports, or cleaning datasets, SQL is at the heart of it all👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/44oj5Ds

Perfect for students, freshers, job seekers, or anyone transitioning into tech✅️
2
Top 10 concepts for Data Analyst interviews 👇👇

1. Data Cleaning: Techniques to handle missing, duplicate, and inconsistent data.


2. SQL: Strong knowledge of Joins, Group By, Window Functions, and Subqueries.


3. Excel: Proficiency in Pivot Tables, VLOOKUP, Conditional Formatting, and advanced formulas.


4. Visualization Tools: Expertise in Tableau, Power BI, or similar tools for dashboards and insights.


5. Data Wrangling: Extracting, transforming, and loading (ETL) data from various sources.


6. Statistics: Basic understanding of mean, median, standard deviation, correlation, and hypothesis testing.


7. Python/R: Ability to use libraries like Pandas, NumPy, and Matplotlib for analysis.


8. Business Acumen: Translate data insights into actionable recommendations for stakeholders.


9. Data Modeling: Create relationships between datasets and understand star/snowflake schema.


10. A/B Testing: Design and interpret experiments to compare group performance.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like for more ♥️

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
6
𝗧𝗼𝗽 𝟱 𝗙𝗿𝗲𝗲 𝗞𝗮𝗴𝗴𝗹𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘄𝗶𝘁𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗝𝘂𝗺𝗽𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗮𝗿𝗲𝗲𝗿😍

Want to break into Data Science but not sure where to start?🚀

These free Kaggle micro-courses are the perfect launchpad — beginner-friendly, self-paced, and yes, they come with certifications!👨‍🎓🎊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4l164FN

No subscription. No hidden fees. Just pure learning from a trusted platform✅️
1
Most popular Python libraries for data visualization:

Matplotlib – The most fundamental library for static charts. Best for basic visualizations like line, bar, and scatter plots. Highly customizable but requires more coding.

Seaborn – Built on Matplotlib, it simplifies statistical data visualization with beautiful defaults. Ideal for correlation heatmaps, categorical plots, and distribution analysis.

Plotly – Best for interactive visualizations with zooming, hovering, and real-time updates. Great for dashboards, web applications, and 3D plotting.

Bokeh – Designed for interactive and web-based visualizations. Excellent for handling large datasets, streaming data, and integrating with Flask/Django.

Altair – A declarative library that makes complex statistical plots easy with minimal code. Best for quick and clean data exploration.

For static charts, start with Matplotlib or Seaborn. If you need interactivity, use Plotly or Bokeh. For quick EDA, Altair is a great choice.

Share with credits: https://t.me/sqlspecialist

Hope it helps :)

#python
2
Building Your Personal Brand as a Data Analyst 🚀

A strong personal brand can help you land better job opportunities, attract freelance clients, and position you as a thought leader in data analytics.

Here’s how to build and grow your brand effectively:

1️⃣ Optimize Your LinkedIn Profile 🔍

Use a clear, professional profile picture and a compelling headline (e.g., Data Analyst | SQL | Power BI | Python Enthusiast).

Write an engaging "About" section showcasing your skills, experience, and passion for data analytics.

Share projects, case studies, and insights to demonstrate expertise.

Engage with industry leaders, recruiters, and fellow analysts.


2️⃣ Share Valuable Content Consistently ✍️

Post insightful LinkedIn posts, Medium articles, or Twitter threads on SQL, Power BI, Python, and industry trends.

Write about real-world case studies, common mistakes, and career advice.

Share data visualization tips, SQL tricks, or step-by-step tutorials.


3️⃣ Contribute to Open-Source & GitHub 💻

Publish SQL queries, Python scripts, Jupyter notebooks, and dashboards.

Share projects with real datasets to showcase your hands-on skills.

Collaborate on open-source data analytics projects to gain exposure.


4️⃣ Engage in Online Data Analytics Communities 🌍

Join and contribute to Reddit (r/dataanalysis, r/SQL), Stack Overflow, and Data Science Discord groups.

Participate in Kaggle competitions to gain practical experience.

Answer questions on Quora, LinkedIn, or Twitter to establish credibility.


5️⃣ Speak at Webinars & Meetups 🎤

Host or participate in webinars on LinkedIn, YouTube, or data conferences.

Join local meetups or online communities like DataCamp and Tableau User Groups.

Share insights on career growth, best practices, and analytics trends.


6️⃣ Create a Portfolio Website 🌐

Build a personal website showcasing your projects, resume, and blog.

Include interactive dashboards, case studies, and problem-solving examples.

Use Wix, WordPress, or GitHub Pages to get started.


7️⃣ Network & Collaborate 🤝

Connect with hiring managers, recruiters, and senior analysts.

Collaborate on guest blog posts, podcasts, or YouTube interviews.

Attend data science and analytics conferences to expand your reach.


8️⃣ Start a YouTube Channel or Podcast 🎥

Share short tutorials on SQL, Power BI, Python, and Excel.

Interview industry experts and discuss data analytics career paths.

Offer career guidance, resume tips, and interview prep content.


9️⃣ Offer Free Value Before Monetizing 💡

Give away free e-books, templates, or mini-courses to attract an audience.

Provide LinkedIn Live Q&A sessions, career guidance, or free tutorials.

Once you build trust, you can monetize through consulting, courses, and coaching.


🔟 Stay Consistent & Keep Learning

Building a brand takes time—stay consistent with content creation and engagement.

Keep learning new skills and sharing your journey to stay relevant.

Follow industry leaders, subscribe to analytics blogs, and attend workshops.

A strong personal brand in data analytics can open unlimited opportunities—from job offers to freelance gigs and consulting projects.

Start small, be consistent, and showcase your expertise! 🔥

Share with credits: https://t.me/sqlspecialist

Hope it helps :)

#dataanalyst
4
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗥𝗼𝗮𝗱𝗺𝗮𝗽

𝟭. 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲𝘀: Master Python, SQL, and R for data manipulation and analysis.

𝟮. 𝗗𝗮𝘁𝗮 𝗠𝗮𝗻𝗶𝗽𝘂𝗹𝗮𝘁𝗶𝗼𝗻 𝗮𝗻𝗱 𝗣𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.

𝟯. 𝗗𝗮𝘁𝗮 𝗩𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗮𝘁𝗶𝗼𝗻: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.

𝟰. 𝗦𝘁𝗮𝘁𝗶𝘀𝘁𝗶𝗰𝘀 𝗮𝗻𝗱 𝗠𝗮𝘁𝗵𝗲𝗺𝗮𝘁𝗶𝗰𝘀: Understand Descriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.

𝟱. 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.

𝟲. 𝗕𝗶𝗴 𝗗𝗮𝘁𝗮 𝗧𝗼𝗼𝗹𝘀: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.

𝟳. 𝗠𝗼𝗻𝗶𝘁𝗼𝗿𝗶𝗻𝗴 𝗮𝗻𝗱 𝗥𝗲𝗽𝗼𝗿𝘁𝗶𝗻𝗴: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).

𝟴. 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗧𝗼𝗼𝗹𝘀: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.

𝟵. 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲 𝗠𝗮𝗻𝗮𝗴𝗲𝗿: Manage resources using Jupyter Notebooks and Power BI.

𝟭𝟬. 𝗗𝗮𝘁𝗮 𝗚𝗼𝘃𝗲𝗿𝗻𝗮𝗻𝗰𝗲 𝗮𝗻𝗱 𝗘𝘁𝗵𝗶𝗰𝘀: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.

𝟭𝟭. 𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴: Leverage AWS, Google Cloud, and Azure for scalable data solutions.

𝟭𝟮. 𝗗𝗮𝘁𝗮 𝗪𝗿𝗮𝗻𝗴𝗹𝗶𝗻𝗴 𝗮𝗻𝗱 𝗖𝗹𝗲𝗮𝗻𝗶𝗻𝗴: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.

Data Analytics Resources
👇👇
https://t.me/sqlspecialist

Hope this helps you 😊
5
Essential Skills Excel for Data Analysts 🚀

1️⃣ Data Cleaning & Transformation

Remove Duplicates – Ensure unique records.
Find & Replace – Quick data modifications.
Text Functions – TRIM, LEN, LEFT, RIGHT, MID, PROPER.
Data Validation – Restrict input values.

2️⃣ Data Analysis & Manipulation

Sorting & Filtering – Organize and extract key insights.
Conditional Formatting – Highlight trends, outliers.
Pivot Tables – Summarize large datasets efficiently.
Power Query – Automate data transformation.

3️⃣ Essential Formulas & Functions

Lookup Functions – VLOOKUP, HLOOKUP, XLOOKUP, INDEX-MATCH.
Logical Functions – IF, AND, OR, IFERROR, IFS.
Aggregation Functions – SUM, AVERAGE, MIN, MAX, COUNT, COUNTA.
Text Functions – CONCATENATE, TEXTJOIN, SUBSTITUTE.

4️⃣ Data Visualization
Charts & Graphs – Bar, Line, Pie, Scatter, Histogram.

Sparklines – Miniature charts inside cells.
Conditional Formatting – Color scales, data bars.
Dashboard Creation – Interactive and dynamic reports.

5️⃣ Advanced Excel Techniques
Array Formulas – Dynamic calculations with multiple values.
Power Pivot & DAX – Advanced data modeling.
What-If Analysis – Goal Seek, Scenario Manager.
Macros & VBA – Automate repetitive tasks.

6️⃣ Data Import & Export
CSV & TXT Files – Import and clean raw data.
Power Query – Connect to databases, web sources.
Exporting Reports – PDF, CSV, Excel formats.

Here you can find some free Excel books & useful resources: https://t.me/excel_data

Hope it helps :)

#dataanalyst
5