Python for Data Analysts
46.1K subscribers
380 photos
61 files
275 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐Ÿ“Š Data Analyst Roadmap (2025)

Master the Skills That Top Companies Are Hiring For!

๐Ÿ“ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting

๐Ÿ“ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions

๐Ÿ“ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling

๐Ÿ“ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression

๐Ÿ“ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis

๐Ÿ“ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting

๐Ÿ“ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights

๐Ÿ“ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders

๐Ÿ“ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community

๐Ÿ“ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements

โœจ React โค๏ธ for more
๐Ÿญ๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ โ€“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป, ๐—š๐—ฟ๐—ผ๐˜„, ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐—ฒ๐—ฑ!๐Ÿ˜

๐Ÿš€ Looking to upgrade your skills without spending a rupee?๐Ÿ’ฐ

Hereโ€™s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ€” all absolutely FREE on Infosys Springboard!๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43UcmQ7

Save this blog, sign up, and start your upskilling journey today!โœ…๏ธ
Common Mistakes Data Analysts Must Avoid โš ๏ธ๐Ÿ“Š

Even experienced analysts can fall into these traps. Avoid these mistakes to ensure accurate, impactful analysis!

1๏ธโƒฃ Ignoring Data Cleaning ๐Ÿงน
Messy data leads to misleading insights. Always check for missing values, duplicates, and inconsistencies before analysis.

2๏ธโƒฃ Relying Only on Averages ๐Ÿ“‰
Averages hide variability. Always check median, percentiles, and distributions for a complete picture.

3๏ธโƒฃ Confusing Correlation with Causation ๐Ÿ”—
Just because two things move together doesnโ€™t mean one causes the other. Validate assumptions before making decisions.

4๏ธโƒฃ Overcomplicating Visualizations ๐ŸŽจ
Too many colors, labels, or complex charts confuse your audience. Keep it simple, clear, and focused on key takeaways.

5๏ธโƒฃ Not Understanding Business Context ๐ŸŽฏ
Data without context is meaningless. Always ask: "What problem are we solving?" before diving into numbers.

6๏ธโƒฃ Ignoring Outliers Without Investigation ๐Ÿ”
Outliers can signal errors or valuable insights. Always analyze why they exist before deciding to remove them.

7๏ธโƒฃ Using Small Sample Sizes โš ๏ธ
Drawing conclusions from too little data leads to unreliable insights. Ensure your sample size is statistically significant.

8๏ธโƒฃ Failing to Communicate Insights Clearly ๐Ÿ—ฃ๏ธ
Great analysis means nothing if stakeholders donโ€™t understand it. Tell a story with dataโ€”donโ€™t just dump numbers.

9๏ธโƒฃ Not Keeping Up with Industry Trends ๐Ÿš€
Data tools and techniques evolve fast. Keep learning SQL, Python, Power BI, Tableau, and machine learning basics.

Avoid these mistakes, and youโ€™ll stand out as a reliable data analyst!

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ: ๐—ง๐—ต๐—ฒ ๐—•๐—ฒ๐˜€๐˜ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐—ถ๐—ป๐—ด ๐—ฃ๐—ผ๐—ถ๐—ป๐˜ ๐—ณ๐—ผ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต & ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€๐Ÿ˜

๐Ÿš€ Want to break into tech or data analytics but donโ€™t know how to start?๐Ÿ“Œโœจ๏ธ

Python is the #1 most in-demand programming language, and Scalerโ€™s free Python for Beginners course is a game-changer for absolute beginners๐Ÿ“Šโœ”๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45TroYX

No coding background needed!โœ…๏ธ
Python for Data Analytics - Quick Cheatsheet with Code Example ๐Ÿš€

1๏ธโƒฃ Data Manipulation with Pandas

import pandas as pd  
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)


2๏ธโƒฃ Numerical Operations with NumPy

import numpy as np  
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)


3๏ธโƒฃ Data Visualization with Matplotlib & Seaborn


import matplotlib.pyplot as plt  
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()


4๏ธโƒฃ Exploratory Data Analysis (EDA)

df.isnull().sum()  
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])


5๏ธโƒฃ Working with Databases (SQL + Python)

import sqlite3  
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)


React with โค๏ธ for more
๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4e76jMX

Enroll For FREE & Get Certified!โœ…๏ธ
This is how data analytics teams work!

Example:
1) Senior Management at Swiggy/Infosys/HDFC/XYZ company needs data-driven insights to solve a critical business challenge.

So, they onboard a data analytics team to provide support.

2) A team from Analytics Team/Consulting Firm/Internal Data Science Division is onboarded.
The team typically consists of a Lead Analyst/Manager and 2-3 Data Analysts/Junior Analysts.

3) This data analytics team (1 manager + 2-3 analysts) is part of a bigger ecosystem that they can rely upon:
- A Senior Data Scientist/Analytics Lead who has industry knowledge and experience solving similar problems.
- Subject Matter Experts (SMEs) from various domains like AI, Machine Learning, or industry-specific fields (e.g., Marketing, Supply Chain, Finance).
- Business Intelligence (BI) Experts and Data Engineers who ensure that the data is well-structured and easy to interpret.
- External Tools & Platforms (e.g., Power BI, Tableau, Google Analytics) that can be leveraged for advanced analytics.
- Data Experts who specialize in various data sources, research, and methods to get the right information.

4) Every member of this ecosystem collaborates to create value for the client:
- The entire team works toward solving the clientโ€™s business problem using data-driven insights.
- The Manager & Analysts may not be industry experts but have access to the right tools and people to bring the expertise required.
- If help is needed from a Data Scientist sitting in New York or a Cloud Engineer in Singapore, itโ€™s availableโ€”collaboration is key!

End of the day:
1) Data analytics teams arenโ€™t just about crunching numbersโ€”theyโ€™re about solving problems using data-driven insights.
2) EVERYONE in this ecosystem plays a vital role and is rewarded well because the value they create helps the business make informed decisions!
3) You should consider working in this field for a few years, at least. Itโ€™ll teach you how to break down complex business problems and solve them with data. And trust me, data-driven decision-making is one of the most powerful skills to have today!

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://t.me/DataSimplifier

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐€๐ฆ๐š๐ณ๐จ๐ง ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ ๐Ÿ˜

Learn AI for free with Amazon's incredible courses!

These courses are perfect to upskill in AI and kickstart your journey in this revolutionary field.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://bit.ly/3CUBpZw

Donโ€™t miss outโ€”enroll today and unlock new career opportunities! ๐Ÿ’ป๐Ÿ“ˆ
Advanced Skills to Elevate Your Data Analytics Career

1๏ธโƒฃ SQL Optimization & Performance Tuning

๐Ÿš€ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2๏ธโƒฃ Machine Learning Basics

๐Ÿค– Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3๏ธโƒฃ Big Data Technologies

๐Ÿ—๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4๏ธโƒฃ Data Engineering Skills

โš™๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5๏ธโƒฃ Advanced Python for Analytics

๐Ÿ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6๏ธโƒฃ A/B Testing & Experimentation

๐ŸŽฏ Design and analyze controlled experiments to drive data-driven decision-making.

7๏ธโƒฃ Dashboard Design & UX

๐ŸŽจ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8๏ธโƒฃ Cloud Data Analytics

โ˜๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9๏ธโƒฃ Domain Expertise

๐Ÿ’ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

๐Ÿ”Ÿ Soft Skills & Leadership

๐Ÿ’ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics