Python for Data Analysts
47.6K subscribers
482 photos
64 files
316 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
๐–๐ก๐ฒ ๐„๐ฏ๐ž๐ซ๐ฒ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ญ & ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐ญ๐ข๐ฌ๐ญ ๐’๐ก๐จ๐ฎ๐ฅ๐ ๐Œ๐š๐ฌ๐ญ๐ž๐ซ ๐๐š๐ง๐๐š๐ฌ

When it comes to data analysis and machine learning, Pandas is non-negotiable. Itโ€™s the ๐Ÿ๐จ๐ฎ๐ง๐๐š๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐๐š๐ญ๐š ๐ฆ๐š๐ง๐ข๐ฉ๐ฎ๐ฅ๐š๐ญ๐ข๐จ๐ง ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง, turning messy datasets into meaningful insights โ€” and thatโ€™s exactly what makes it a ๐ ๐š๐ฆ๐ž-๐œ๐ก๐š๐ง๐ ๐ž๐ซ in real-world projects.

Recently, I explored an in-depth guide on ๐๐š๐ง๐๐š๐ฌ ๐Ÿ๐ซ๐จ๐ฆ ๐๐š๐ฌ๐ข๐œ๐ฌ ๐ญ๐จ ๐€๐๐ฏ๐š๐ง๐œ๐ž๐, and hereโ€™s what stood out:-

- Use len() to analyze string data (e.g., name lengths in the Titanic dataset).
- Create pivot tables for grouped insights (like finding top batting averages per team).
- Simplify categories (e.g., replacing โ€œmaleโ€/โ€œfemaleโ€ with โ€œMโ€/โ€œFโ€).
- Merge and join datasets seamlessly, even with missing values.

๐‡๐ž๐ซ๐žโ€™๐ฌ ๐ฐ๐ก๐ฒ ๐๐š๐ง๐๐š๐ฌ ๐ข๐ฌ ๐œ๐ซ๐ข๐ญ๐ข๐œ๐š๐ฅ ๐ข๐ง ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ & ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐œ๐ž:

- ๐ƒ๐š๐ญ๐š ๐‚๐ฅ๐ž๐š๐ง๐ข๐ง๐ :- Handle missing values, duplicates, and inconsistent formats.
- ๐„๐ฑ๐ฉ๐ฅ๐จ๐ซ๐š๐ญ๐จ๐ซ๐ฒ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ (๐„๐ƒ๐€):- Quickly summarize patterns and anomalies.
- ๐…๐ž๐š๐ญ๐ฎ๐ซ๐ž ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐ :- Create meaningful features to improve model performance.
- ๐ƒ๐š๐ญ๐š ๐ˆ๐ง๐ญ๐ž๐ ๐ซ๐š๐ญ๐ข๐จ๐ง:- Combine multiple data sources with ease.
- ๐“๐ข๐ฆ๐ž ๐’๐ž๐ซ๐ข๐ž๐ฌ ๐’๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ:- Ideal for forecasting and trend analysis.

In short โ€” ๐๐š๐ง๐๐š๐ฌ ๐ญ๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐ฌ ๐ซ๐š๐ฐ ๐๐š๐ญ๐š ๐ข๐ง๐ญ๐จ ๐š๐œ๐ญ๐ข๐จ๐ง๐š๐›๐ฅ๐ž ๐ข๐ง๐ฌ๐ข๐ ๐ก๐ญ๐ฌ.

If youโ€™re learning Python for ML or analytics, make Pandas your priority.

๐Ÿ‘ ๐—Ÿ๐—ถ๐—ธ๐—ฒ for more such content.
๐Ÿ‘4
๐—–๐—ถ๐˜€๐—ฐ๐—ผ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฃ๐—ฟ๐—ผ๐—ณ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

 Stand out in the competitive job market.Cisco Networking Academy has you covered with free courses designed to enhance your professional skills.

โœ… Learn the Most In-Demand Skills:
โœ… Perfect for Everyone
โœ… Earn Recognized Certificates

๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡:- 

https://pdlink.in/3PeiTOW

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ‘1
Essential Pandas Functions for Data Analysis

Data Loading:

pd.read_csv() - Load data from a CSV file.

pd.read_excel() - Load data from an Excel file.


Data Inspection:

df.head(n) - View the first n rows.

df.info() - Get a summary of the dataset.

df.describe() - Generate summary statistics.


Data Manipulation:

df.drop(columns=['col1', 'col2']) - Remove specific columns.

df.rename(columns={'old_name': 'new_name'}) - Rename columns.

df['col'] = df['col'].apply(func) - Apply a function to a column.


Filtering and Sorting:

df[df['col'] > value] - Filter rows based on a condition.

df.sort_values(by='col', ascending=True) - Sort rows by a column.


Aggregation:

df.groupby('col').sum() - Group data and compute the sum.

df['col'].value_counts() - Count unique values in a column.


Merging and Joining:

pd.merge(df1, df2, on='key') - Merge two DataFrames.

pd.concat([df1, df2]) - Concatenate

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘2
Python is a popular programming language in the field of data analysis due to its versatility, ease of use, and extensive libraries for data manipulation, visualization, and analysis. Here are some key Python skills that are important for data analysts:

1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.

4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.

5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.

6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.

7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.

8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.

9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.

10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.

By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.
โค3๐Ÿ‘2
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฆ๐—ธ๐˜†๐—ฟ๐—ผ๐—ฐ๐—ธ๐—ฒ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Whether youโ€™re a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FdLMcv

Gain the skills to manage analytics projectsโœ…๏ธ
๐Ÿ‘2
Data Analyst INTERVIEW QUESTIONS AND ANSWERS
๐Ÿ‘‡๐Ÿ‘‡

1.Can you name the wildcards in Excel?

Ans: There are 3 wildcards in Excel that can ve used in formulas.

Asterisk (*) โ€“ 0 or more characters. For example, Ex* could mean Excel, Extra, Expertise, etc.

Question mark (?) โ€“ Represents any 1 character. For example, R?ain may mean Rain or Ruin.

Tilde (~) โ€“ Used to identify a wildcard character (~, *, ?). For example, If you need to find the exact phrase India* in a list. If you use India* as the search string, you may get any word with India at the beginning followed by different characters (such as Indian, Indiana). If you have to look for Indiaโ€ exclusively, use ~.

Hence, the search string will be india~*. ~ is used to ensure that the spreadsheet reads the following character as is, and not as a wildcard.


2.What is cascading filter in tableau?

Ans: Cascading filters can also be understood as giving preference to a particular filter and then applying other filters on previously filtered data source. Right-click on the filter you want to use as a main filter and make sure it is set as all values in dashboard then select the subsequent filter and select only relevant values to cascade the filters. This will improve the performance of the dashboard as you have decreased the time wasted in running all the filters over complete data source.


3.What is the difference between .twb and .twbx extension?

Ans:
A .twb file contains information on all the sheets, dashboards and stories, but it wonโ€™t contain any information regarding data source. Whereas .twbx file contains all the sheets, dashboards, stories and also compressed data sources. For saving a .twbx extract needs to be performed on the data source. If we forward .twb file to someone else than they will be able to see the worksheets and dashboards but wonโ€™t be able to look into the dataset.


4.What are the various Power BI versions?

Power BI Premium capacity-based license, for example, allows users with a free license to act on content in workspaces with Premium capacity. A user with a free license can only use the Power BI service to connect to data and produce reports and dashboards in My Workspace outside of Premium capacity. They are unable to exchange material or publish it in other workspaces. To process material, a Power BI license with a free or Pro per-user license only uses a shared and restricted capacity. Users with a Power BI Pro license can only work with other Power BI Pro users if the material is stored in that shared capacity. They may consume user-generated information, post material to app workspaces, share dashboards, and subscribe to dashboards and reports. Pro users can share material with users who donโ€™t have a Power BI Pro subscription while workspaces are at Premium capacity.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘6
Exploratory Data Analysis ( EDA)
๐Ÿ‘4โค2
Python for Data Analysis: Must-Know Libraries ๐Ÿ‘‡๐Ÿ‘‡

Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.

๐Ÿ”ฅ Essential Python Libraries for Data Analysis:

โœ… Pandas โ€“ The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.

๐Ÿ“Œ Example: Loading a CSV file and displaying the first 5 rows:

import pandas as pd df = pd.read_csv('data.csv') print(df.head()) 


โœ… NumPy โ€“ Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.

๐Ÿ“Œ Example: Creating an array and performing basic operations:

import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average 


โœ… Matplotlib & Seaborn โ€“ These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.

๐Ÿ“Œ Example: Creating a basic bar chart:

import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show() 


โœ… Scikit-Learn โ€“ A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.

โœ… OpenPyXL โ€“ Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.

๐Ÿ’ก Challenge for You!
Try writing a Python script that:
1๏ธโƒฃ Reads a CSV file
2๏ธโƒฃ Cleans missing data
3๏ธโƒฃ Creates a simple visualization

React with โ™ฅ๏ธ if you want me to post the script for above challenge! โฌ‡๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘5๐Ÿ‘1
๐Ÿฏ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—›๐—ฃ ๐—Ÿ๐—œ๐—™๐—˜ ๐˜๐—ผ ๐—ฆ๐˜‚๐—ฝ๐—ฒ๐—ฟ๐—ฐ๐—ต๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Whether youโ€™re a student, jobseeker, aspiring entrepreneur, or working professionalโ€”HP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free๐Ÿ“Š๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45ci02k

Join millions of learners worldwide who are already upgrading their skillsets through HP LIFEโœ…๏ธ
๐Ÿ‘1
List of Python Project Ideas ๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป๐Ÿ -

Beginner Projects

๐Ÿ”น Calculator
๐Ÿ”น To-Do List
๐Ÿ”น Number Guessing Game
๐Ÿ”น Basic Web Scraper
๐Ÿ”น Password Generator
๐Ÿ”น Flashcard Quizzer
๐Ÿ”น Simple Chatbot
๐Ÿ”น Weather App
๐Ÿ”น Unit Converter
๐Ÿ”น Rock-Paper-Scissors Game

Intermediate Projects

๐Ÿ”ธ Personal Diary
๐Ÿ”ธ Web Scraping Tool
๐Ÿ”ธ Expense Tracker
๐Ÿ”ธ Flask Blog
๐Ÿ”ธ Image Gallery
๐Ÿ”ธ Chat Application
๐Ÿ”ธ API Wrapper
๐Ÿ”ธ Markdown to HTML Converter
๐Ÿ”ธ Command-Line Pomodoro Timer
๐Ÿ”ธ Basic Game with Pygame

Advanced Projects

๐Ÿ”บ Social Media Dashboard
๐Ÿ”บ Machine Learning Model
๐Ÿ”บ Data Visualization Tool
๐Ÿ”บ Portfolio Website
๐Ÿ”บ Blockchain Simulation
๐Ÿ”บ Chatbot with NLP
๐Ÿ”บ Multi-user Blog Platform
๐Ÿ”บ Automated Web Tester
๐Ÿ”บ File Organizer

Python Projects: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

Cool Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502/149
โค2๐Ÿ‘2
Hey guys,

Today, letโ€™s talk about some of the Python questions you might face during a data analyst interview. Below, Iโ€™ve compiled the most commonly asked Python questions you should be prepared for in your interviews.

1. Why is Python used in data analysis?

Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.

2. What are the essential libraries used for data analysis in Python?

Some key libraries youโ€™ll use frequently are:

- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.

3. What is a Python dictionary, and how is it used in data analysis?

A dictionary in Python is an unordered collection of key-value pairs. Itโ€™s extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.

Example:
sales = {"January": 12000, "February": 15000, "March": 17000}
print(sales["February"]) # Output: 15000


4. Explain the difference between a list and a tuple in Python.

- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโ€™s written in square brackets [ ].

Example:

  my_list = [10, 20, 30]
my_list.append(40)


- Tuple: Immutable, meaning once defined, you cannot modify it. Itโ€™s written in parentheses ( ).

Example:

  my_tuple = (10, 20, 30)

5. How would you handle missing data in a dataset using Python?

Handling missing data is critical in data analysis, and Pythonโ€™s Pandas library makes it easy. Here are some common methods:

- Drop missing data:

  df.dropna()

- Fill missing data with a specific value:

  df.fillna(0)

- Forward-fill or backfill missing values:

  df.fillna(method='ffill')  # Forward-fill
df.fillna(method='bfill') # Backfill

6. How do you merge/join two datasets in Python?

- pd.merge(): For SQL-style joins (inner, outer, left, right).

  df_merged = pd.merge(df1, df2, on='common_column', how='inner')

- pd.concat(): For concatenating along rows or columns.

  df_concat = pd.concat([df1, df2], axis=1)

7. What is the purpose of lambda functions in Python?

A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.

Example:
add = lambda x, y: x + y
print(add(10, 20))  # Output: 30

Lambdas are often used in data analysis for quick transformations or filtering operations within functions like map() or filter().

If youโ€™re preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://t.me/DataSimplifier

Like for more resources like this ๐Ÿ‘ โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
โค3๐Ÿ‘3
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜?๐Ÿ˜

YouTube has your back! Hereโ€™s a full learning path to take your analytics game from beginner to confident analyst โ€” all through real-world examples and expert walkthroughs๐Ÿ’ก

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42UO2OZ

Save this post and start learning step by step!โœ…๏ธ
๐Ÿ‘1
Quick Recap of Python Concepts

1๏ธโƒฃ Variables: Containers for storing data values, like integers, strings, and lists.

2๏ธโƒฃ Data Types: Includes types like int, float, str, list, tuple, dict, and set to represent different forms of data.

3๏ธโƒฃ Functions: Blocks of reusable code defined using the def keyword to perform specific tasks.

4๏ธโƒฃ Loops: for and while loops that allow you to repeat actions until a condition is met.

5๏ธโƒฃ Conditionals: if, elif, and else statements to execute code based on conditions.

6๏ธโƒฃ Lists: Ordered collections of items that are mutable, meaning you can change their content after creation.

7๏ธโƒฃ Dictionaries: Unordered collections of key-value pairs that are useful for fast lookups.

8๏ธโƒฃ Modules: Pre-written Python code that you can import to add functionality, such as math, os, and datetime.

9๏ธโƒฃ List Comprehension: A compact way to create lists with conditions and transformations applied to each element.

๐Ÿ”Ÿ Exceptions: Error-handling mechanism using try, except, finally blocks to manage and respond to runtime errors.

Remember, practical application and real-world projects are very important to master these topics. You can refer these amazing resources for Python Interview Preparation.

Like this post if you want me to continue this Python series ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿฅฐ3๐Ÿ‘2โค1
Forwarded from Data Analytics
๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

Learn directly from industry leaders at Microsoft and LinkedIn Learning and gain in-demand skills to elevate your career

๐Ÿ“ˆ Donโ€™t miss this chance to build your skills, earn certifications, and get job-readyโ€”all for free.

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/41ODJMi

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ‘2
For data analysts working with Python, mastering these top 10 concepts is essential:

1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.

2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.

3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.

4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.

5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.

6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.

7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.

8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.

9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.

10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.

Give credits while sharing: https://t.me/pythonanalyst

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1๐Ÿฅฐ1
๐Ÿณ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Hereโ€™s your golden chance to upskill with free, industry-recognized certifications from Googleโ€”all without spending a rupee!๐Ÿ’ฐ๐Ÿ“Œ

These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ‡๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3H2YJX7

Tag them or share this post!โœ…๏ธ
๐Ÿ‘1
Python for Data Analytics - Quick Cheatsheet with Cod e Example ๐Ÿš€

1๏ธโƒฃ Data Manipulation with Pandas

import pandas as pd  
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)


2๏ธโƒฃ Numerical Operations with NumPy

import numpy as np  
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)


3๏ธโƒฃ Data Visualization with Matplotlib & Seaborn


import matplotlib.pyplot as plt  
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()


4๏ธโƒฃ Exploratory Data Analysis (EDA)

df.isnull().sum()  
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])


5๏ธโƒฃ Working with Databases (SQL + Python)

import sqlite3  
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)


React with โค๏ธ for more

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘5โค2
The Foundation of Data Science
๐Ÿ‘2โค1
Top AI Algorithms ๐Ÿ‘†โœ…
โค4๐Ÿ‘1
Numpy Cheatsheet ๐Ÿ“ฑ
๐Ÿ‘3โค1